Дыхательный объем в норме. Показатели внешнего дыхания

Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов . В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

Альвеолярная вентиляция

Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не столько легочная, сколько альвеолярная вентиляция.

Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл.

Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.

Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП)  ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.

Рисунок 6. Соотношение МОД и альвеолярной вентиляции

Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1).

text_fields

text_fields

arrow_upward

Общим для всех живых клеток является процесс расщепления органических молекул последовательным рядом ферментативных реакций, в результате чего высвобождается энергия. Практичес­ки любой процесс, при котором окисление органических ве­ществ ведет к. выделению химической энергии, называют дыха­нием. Если для него требуется кислород, то дыхание называют аэробным , а если же реакции идут в отсутствии кислорода - анаэробным дыханием . Для всех тканей позвоночных животных и человека основным источником энергии являются процессы аэробного окисления, которые протекают в митохондриях кле­ток, приспособленных для превращения энергии окисления в энергию резервных макроэргических соединений типа АТФ. Последовательность реакций, посредством которых клетки орга­низма человека используют энергию связей органических моле­кул, называется внутренним, тканевым или клеточным дыханием.

Под дыханием высших животных и человека понимают сово­купность процессов, обеспечивающих поступление во внутрен­нюю среду организма кислорода, использование его для окис­ления органических веществ и удаление из организма углекислого газа.

Функцию дыхания у человека реализуют:

1) внешнее, или легоч­ное, дыхание, осуществляющее газообмен между наружной и внут­ренней средой организма (между воздухом и кровью);
2) кровооб­ращение, обеспечивающее транспорт газов к тканям и от них;
3) кровь как специфическая газотранспортная среда;
4) внутреннее, или тканевое, дыхание, осуществляющее непосредственный процесс клеточного окисления;
5) средства нейрогуморальной регуляции дыхания.

Результатом деятельности системы внешнего дыхания является обогащение крови кислородом и освобождение от избытка углекис­лоты.

Изменение газового состава крови в легких обеспечивают три процесса :

1) непрерывная вентиляция альвеол для поддержания нормального газового состава альвеолярного воздуха;
2) диффузия газов через альвеолярно- капиллярную мембрану в объеме, достаточ­ном для достижения равновесия давления кислорода и углекислого газа в альвеолярном воздухе и крови;
3) непрерывный кровоток в капиллярах легких в соответствии с объемом их вентиляции

Емкость легких

text_fields

text_fields

arrow_upward

Общая емкость . Количество воздуха, находящееся в легких после максимального вдоха, составляет общую емкость легких, величина которой у взрос­лого человека составляет 4100-6000 мл (рис.8.1).
Она состоит из жизненной емкости легких, представляющей собой то количество воздуха (3000-4800 мл), которое выходит из легких при максимально глубоком выдохе после максимально глубокого вдоха, и
остаточного воздуха (1100-1200 мл), который еще остается в легких после мак­симального выдоха.

Общая емкость = Жизненная емкость + Остаточный объем

Жизненная емкость составляет три легочных объема:

1) дыхательный объем , представляющий собой объем (400- 500 мл) воздуха, вдыхае­мый и выдыхаемый при каждом дыхательном цикле;
2) резервный объем вдоха (дополнительный воздух), т.е. тот объем (1900-3300 мл) воз­духа, который можно вдохнуть при максимальном вдохе после обыч­ного вдоха;
3) резервный объем выдоха (резервный воздух), т.е. объем (700- 1000 мл), который можно выдохнуть при максимальном выдохе после обычного выдоха.

Жизненная емкость = Резервный объем вдоха + Дыхательный объем + Резервный объем выдоха

функциональная остаточная емкость . При спокойном дыхании после выдоха в легких остается резервный объем выдоха и остаточный объем. Сум­му этих объемов называют функциональной остаточной емкостью, а также нормальной емкостью легких, емкостью покоя, емкостью рав­новесия, буферным воздухом.

функциональная остаточная емкость = Резервный объем выдоха + Остаточный объем

Рис.8.1. Легочные объемы и емкости.

УДК 612.215+612.1 ББК Е 92 + Е 911

А.Б. Загайнова, Н.В. Турбасова. Физиология дыхания и кровообращения. Учебно-методическое пособие по курсу «Физиология человека и животных»: для студентов 3 курса ОДО и 5 курса ОЗО биологического факультета. Тюмень.: Издательство Тюменского государственного университета, 2007. - 76 с.

Учебно-методическое пособие включает лабораторные работы, составленные в соответствии с программой курса «Физиология человека и животных», многие из которых иллюстрируют фундаментальные научные положения классической физиологии. Часть работ имеет прикладной характер и представляет собой методы самоконтроля здоровья и физического состояния, способы оценки физической работоспособности.

ОТВЕТСТВЕННЫЙ РЕДАКТОР: В.С.Соловьев, д.мед.н., профессор

© Тюменский государственный университет, 2007

© Издательство Тюменского государственного университета, 2007

© А.Б. Загайнова, Н.В. Турбасова, 2007

Пояснительная записка

Предметом исследования в разделах «дыхание» и «кровообращение» являются живые организмы и их функционирующие структуры, обеспечивающие эти жизненно-важные функции, чем и определяется выбор методов физиологического исследования.

Цель курса: сформировать представления о механизмах функционирования органов дыхания и кровообращения, о регуляции деятельности сердечно-сосудистой и дыхательной систем, об их роли в обеспечении взаимодействия организма с внешней средой.

Задачи лабораторного практикума: ознакомить студентов с методами исследования физиологических функций человека и животных; проиллюстрировать фундаментальные научные положения; представить методики самоконтроля физического состояния, оценки физической работоспособности при физических нагрузках различной интенсивности.

На проведение лабораторных занятий по курсу «Физиология человека и животных» отводится 52 часа на ОДО и 20 часов на ОЗО. Итоговая форма отчетности по курсу «Физиология человека и животных» - экзамен.

Требования к экзамену: необходимо понимание основ жизнедеятельности организма, в том числе механизмов функционирования систем органов, клеток и отдельных клеточных структур, регуляции работы физиологических систем, а также закономерности взаимодействия организма с внешней средой.

Учебно-методическое пособие разработано в рамках программы общего курса «Физиология человека и животных» для студентов биологического факультета.

ФИЗИОЛОГИЯ ДЫХАНИЯ

Сущность процесса дыхания заключается в доставке к тканям орга­низма кислорода, обеспечивающего протекание окислительных реакций, что приводит к освобождению энергии и выделению из организма диоксида углерода, образующегося в результате обмена веществ.

Процесс, протекающий в легких и заключающийся в обмене газов между кровью и окружающей средой (воздухом, поступающим в альвеолы, называют внешним, легочным дыханием, или вентиляцией легких .

В результате газообмена в легких кровь насыщается кислородом, теряет углекислоту, т.е. вновь становится способной переносить кислород к тканям.

Обновление газового состава внутренней среды организма происходит вследствие циркуляции крови. Транспортная функция осуществляется кровью благодаря физическому растворению в ней СО 2 и О 2 и связыванию их с компонентами крови. Так, гемоглобин способен вступать в обратимую реакцию с кислородом, а связывание СО 2 происходит в результате образования в плазме крови обратимых бикарбонатных соединений.

Потребление кислорода клетками и осуществление окислительных реакций с образованием углекислого газа составляет сущность процессов внутреннего , или тканевого дыхания .

Таким образом, лишь последовательное изучение всех трех звеньев дыхания может дать представление об одном из самых сложных физиологических процессов.

Для изучения внешнего дыхания (вентиляция легких), газообмена в легких и тканях, а также транспорта газов кровью используют различные методы, позволяющие оценивать дыхательную функцию в состоянии покоя, при физической нагрузке и различных воздействиях на организм.

ЛАБОРАТОРНАЯ РАБОТА № 1

ПНЕВМОГРАФИЯ

Пневмография - это регистрация дыхательных движений. Она позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха. У взрослого человека число дыхательных движений составляет 12-18 в минуту, у детей дыхание более частое. При физической работе оно увеличивается вдвое и более. При мышечной работе изменяется и частота, и глубина дыхания. Изменение ритма дыхания и его глубины наблюдаются во время глотания, разговора, после задержки дыхания и т. п.

Между двумя фазами дыхания нет пауз: вдох непосредственно переходит в выдох и выдох во вдох.

Как правило, вдох несколько короче выдоха. Время вдоха относится ко времени выдоха, как 11:12 или даже как 10:14.

Кроме ритмических дыхательных движений, обеспечивающих вентиляцию легких, по времени могут наблюдаться особые дыхательные движения. Некоторые из них возникают рефлекторно (защитные дыхательные движения: кашель, чихание), другие произвольно, в связи с фонацией (речью, пением, декламацией и др.).

Регистрация дыхательных движений грудной клетки осуществляется при помощи специального прибора - пневмографа. Получаемая запись – пневмограмма – позволяет судить: о продолжительности фаз дыхания - вдоха и выдоха, частоте дыхания, относительной глубине, зависимости частоты и глубины дыхания от физиологического состояния организма - покоя, работы и т.д.

Пневмография основана на принципе воздушной передачи дыхательных движений грудной клетки пишущему рычажку.

Наиболее употребительный в настоящее время пневмограф представляет собой продолговатую резиновую камеру, помещенную в матерчатый чехол, герметически соединенный резиновой трубочкой с капсулой Марэ. При каждом вдохе грудная клетка расширяется и сдавливает воздух в пневмографе. Это давление передается в полость капсулы Марэ, ее упругая резиновая крышечка поднимается, и опирающийся на нее рычажок пишет пневмограмму.

В зависимости от применяемых датчиков пневмографию можно осуществлять различными способами. Наиболее простым и доступным для регистрации дыхательных движений является пневмодатчик с капсулой Марэ. Для пневмографии можно применять реостатные, тензометрические и емкостные датчики, но в этом случае необходимы электронные усилительные и регистрирующие устройства.

Для работы необходимы: кимограф, манжетка от сфигмоманометра, капсула Марэ, штатив, тройник, резиновые трубки, отметчик времени, раствор аммиака. Объект исследования - человек.

Проведение работы. Собирают установку для регистрации ды­хательных движений, как показано на рис. 1, А. Манжетку от сфигмоманометра укрепляют на самой подвижной части грудной клетки испытуемого (при брюшном типе дыхания это будет нижняя треть, при грудном - средняя треть грудной клетки) и соединяют ее с помощью тройника и резиновых трубок с капсулой Марэ. Через тройник, открыв зажим, в регистрирующую систему вводят небольшое количество воздуха, следя за тем, чтобы слишком высокое давление неразорвало резиновую перепонку капсулы. Убедившись, что пневмограф укреплен правильно и движения грудной клетки передаются рычажку капсулы Марэ, подсчитывают число дыхательных движений в минуту, а затем устанавливают писчик по касательной к кимографу. Включают кимограф и отметчик времени и приступают к записи пневмограммы (испытуемый при этом не должен смотреть на пневмограмму).

Рис. 1. Пневмография.

А - графическая регистрация дыхания с помощью капсулы Марэ; Б - пневмограммы, записанные при действии различных факторов, вызывающих изменение дыхания: 1 - широкая манжетка; 2 - резиновая трубка; 3 – тройник; 4 - капсула Марэ; 5 – кимограф; 6 -отметчик времени; 7 - универсальный штатив; а - спокойное дыхание; б - при вдыхании паров аммиака; в - во время разговора; г - после гипервентиляции; д - после произвольной задержки дыхания; е - при физической нагрузке; б"-е" - отметки применяемого воздействия.

Регистрируют на кимографе следующие типы дыхания:

1) спокойное дыхание;

2) глубокое дыхание (испытуемый произвольно делает несколько глубоких вдохов и выдохов – жизненная емкость легких);

3) дыхание после физической нагрузки. Для этого испытуемого просят, не сни­мая пневмографа, сделать 10-12 приседаний. При этом, чтобы в результате резких толчков воздуха не разорвалась покрышка капсулы Марея, зажимом Пеана пережимают резиновую трубочку соединяющую пневмограф с капсулой. Тотчас после окончания приседаний зажим снимают и записывают дыхательные движения);

4) дыхание во время декламации, разговорной речи, смеха (обращают внимание, как изменяется продолжительность вдоха и выдоха);

5) дыхание при кашле. Для этого испытуемый делает несколько произвольных выдыхательных кашлевых движений;

6) одышку - диспноэ, вызванную задержкой дыхания. Опыт произво­дят в следующем порядке. Записав нормальное дыхание (эйпноэ) в положении испытуемого сидя, просят его задержать дыхание на выдохе. Обычно через 20-30 секунд происходит непро­извольное восстановление дыхания, причём частота и глубина дыхательных движений становятся значительно больше, наблю­дается одышка;

7) изменение дыхания при уменьшении углекислого газа в аль­веолярном воздухе и крови, что достигается гипервентиляци­ей лёгких. Испытуемый делает глубокие и частые дыхательные движения до лёгкого головокружения, после чего наступает естественная задержка дыхания (апноэ);

8) при глотании;

9) при вдыхании паров аммиака (к носу испытуемого подносят вату, смоченную раствором аммиака).

Некоторые пневмограммы представлены на рис. 1,Б.

Полученные пневмограммы наклейте в тетрадь. Рассчитайте количество дыхательных движений в 1 минуту при разных условиях регистрации пневмограммы. Определите, в какую фазу дыхания осуществляется глотание и речь. Сравните характер изменения дыхания под влиянием различных факторов воздействия.

ЛАБОРАТОРНАЯ РАБОТА № 2

СПИРОМЕТРИЯ

Спирометрия - метод определения жизненной емкости легких и составляющих ее объемов воздуха. Жизненная емкость легких (ЖЕЛ) - это наибольшее количество воздуха, которое человек может выдохнуть после максимального вдоха. На рис. 2 показаны легочные объемы и емкости, характеризующие функциональное состояние легких, а также пневмограмма, поясняющая связь объемов и емкостей легких с дыхательными движениями. Функциональное состояние легких зависит от возраста, роста, пола, физического развития и ряда, других факторов. Для оценки функции дыхания у данного лица, измеренные у него легочные объемы следует сравнивать с должными величинами. Должные величины рассчитывают по формулам или определяют по номограммам (рис. 3), отклонения на ± 15% расцениваются как несущественные. Для измерения ЖЕЛ и составляющих ее объемов используют сухой спирометр (рис. 4).

Рис. 2. Спирограмма. Легочные объёмы и ёмкости:

РОвд - резервный объем вдоха; ДО - дыхательный объем; РОвыд - резервный объем выдоха; ОО - остаточный объем; Евд - емкость вдоха; ФОЕ - функциональная остаточная емкость; ЖЕЛ - жизненная емкость легких; ОЕЛ - общая емкость легких.

Легочные объемы:

Резервный объем вдоха (РОвд) – максимальный объем воздуха, который человек может вдохнуть после спокойного вдоха.

Резервный объем выдоха (РОвыд) – максимальный объем воздуха, который человек может выдохнуть после спокойного выдоха.

Остаточный объем (ОО) – объем газа в легких после максимального выдоха.

Емкость вдоха (Евд) – максимальный объем воздуха, который человек может вдохнуть после спокойного выдоха.

Функциональная остаточная емкость (ФОЕ) – объем газа в легких, остающийся после спокойного вдоха.

Жизненная емкость легких (ЖЕЛ) – максимальный объем воздуха, который можно выдохнуть после максимального вдоха.

Общая емкость легких (ОЕл) – объем газов в легких после максимального вдоха.

Для работы необходимы: сухой спирометр, носовой зажим, загубник, спирт, вата. Объект исследования - человек.

Преимущество сухого спирометра заключается в том, что он портативен и удобен в работе. Сухой спирометр представляет собой воздушную турбинку, вращаемую струей выдыхаемого воздуха. Вращение турбинки через кинематическую цепь передается стрелке прибора. Для остановки стрелки по оконча­нии выдоха спирометр снабжен тормозным устройством. Величину измеряемого объема воздуха определяют по шкале прибора. Шкалу можно поворачивать, что позволяет устанавливать стрелку на нуль перед каждым измерением. Выдох воздуха из легких производят через мундштук.

Проведение работы. Мундштук спирометра протирают ватой, смоченной спиртом. Испытуемый после максимального вдоха делает максимально глубокий выдох в спирометр. По шкале спирометра определяют ЖЕЛ. Точность результатов повышается, если измерение ЖЕЛ производят несколько раз и вычисляют среднюю величину. При многократных измерениях необходимо каждый раз устанавливать исходное положение шкалы спирометра. Для этого у сухого спирометра поворачивают из­мерительную шкалу и нулевое деление шкалы совмещают со стрелкой.

ЖЕЛ определяют в положении испытуемого стоя, сидя и лежа, а также после физической нагрузки (20 приседаний за 30 секунд). Отмечают разницу в результатах измерений.

Затем испытуемый осуществляет несколько спокойных выдохов в спирометр. При этом подсчитывают количество дыхательных движений. Разделив показания спирометра на число выдохов, сделанных в спирометр, определяют дыхательный объем воздуха.

Рис. 3. Номограмма для определения долж­ной величины ЖЕЛ.

Рис. 4. Суховоздушный спиро­метр.

Для определения резервного объема выдоха испытуемый делает после очередного спокойного выдоха максимальный выдох в спирометр. По шкале спирометра определяют резервный объем выдоха. Повторяют измерения несколько раз и вычисляют среднюю величину.

Резервный объем вдоха можно определить двумя способами: вычислить и измерить спирометром. Для его вычисления необходимо из величины ЖЕЛ вычесть сумму дыхательного и резервного (выдоха) объемов воздуха. При измерении резервного объема вдоха спирометром в него набирают определённый объем воздуха и испытуемый после спокойного вдоха делает максимальный вдох из спирометра. Разность между первоначальным объемом воздуха в спирометре и объемом, оставшимся там после глубокого вдоха, соответствует резервному объему вдоха.

Для определения остаточного объема воздуха не существует прямых методов, поэтому используют косвенные. Они могут быть основаны на разных принципах. Для этих целей применяют, например, плетизмографию, оксигемометрию и измерение концентрации индикаторных газов (гелий, азот). Считают, что в норме остаточный объем составляет 25-30% от величины ЖЕЛ.

Спирометр дает возможность установить и ряд других характеристик дыхательной деятельности. Одной из них являет величина легочной вентиляции. Для ее определения число циклов дыхательных движений в минуту умножают на дыхательный объем. Так, за одну минуту между организмом и средой в норме обменивается около 6000 мл воздуха.

Альвеолярная вентиляция = частота дыхания х (дыхательный объем - объем «мертвого» пространства).

Установив параметры дыхания, можно оценить интенсивность обмена веществ в организме, определив потребление кислорода.

В ходе работы важно выяснить, находятся ли величины, полученные для конкретного человека, в пределах нормы. С этой целью были разработаны специальные номограммы и формулы, где учитывается корреляция отдельных характеристик функции внешнего дыхания и таких факторов как: пол, рост, возраст и др.

Должная величина жизненной емкости легких рассчитывается по формулам (Гуминский А.А., Леонтьева Н.Н., Маринова К.В., 1990):

для мужчин -

ЖЕЛ = {(рост (см) х 0,052) – (возраст (лет) х 0,022)} - 3,60;

для женщин –

ЖЕЛ = {(рост (см) х 0,041)- (возраст (лет) х 0,018)} - 2,68.

для мальчиков 8 -12 лет -

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,6;

для мальчиков 13 -16 лет-

ЖЕЛ = {(рост (см) х 0,052) - (возраст (лет) х 0,022)} - 4,2;

для девочек 8 - 16 лет -

ЖЕЛ = {(рост (см) х 0,041) - (возраст (лет) х 0,018)} - 3,7.

К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека.

Результаты работы и их оформление. 1. Занесите в таблицу 1 результаты измерений, вычислите среднее значение ЖЕЛ.

Таблица 1

Номер измерения

ЖЕЛ (покой)

стоя сидя
1 2 3 Среднее

2. Сравните результаты измерений ЖЕЛ (покой) стоя и сидя. 3. Сравните результаты измерений ЖЕЛ стоя (покой) с результатами, полученными после физической нагрузки. 4. Рассчитайте % от должной величины, зная показатель ЖЕЛ, полученный при измерении стоя (покой) и должной ЖЕЛ (рассчитанной по формуле):

ЖЕЛфакт. х 100 (%).

5. Сравните величину ЖЕЛ, измеренную спирометром, с должной ЖЕЛ, найденной по номограмме. Рассчитайте остаточный объем, а также емкости легких: общую емкость легких, емкость вдоха и функциональную остаточную емкость. 6. Сделайте выводы.

ЛАБОРАТОРНАЯ РАБОТА № 3

ОПРЕДЕЛЕНИЕ МИНУТНОГО ОБЪЕМА ДЫХАНИЯ (МОД) И ЛЕГОЧНЫХ ОБЪЕМОВ

(ДЫХАТЕЛЬНОГО, РЕЗЕРВНОГО ОБЪЕМА ВДОХА

И РЕЗЕРВНОГО ОБЪЕМА ВЫДОХА)

Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Обычно измеряют минутный объем дыхания (МОД). Его величина при спокойном дыхании 6-9 л. Вентиляция легких зависит от глубины и частоты дыхания, которая в состоянии покоя составляет 16 в 1 мин (от 12 до 18). Минутный объем дыхания равен:

МОД = ДО х ЧД,

где ДО - дыхательный объем; ЧД - частота дыхания.

Для работы необходимы: сухой спирометр, носовой зажим, спирт, вата. Объект исследования - человек.

Проведение работы. Для определения объема дыхательного воздуха испытуемый должен сделать спокойный выдох в спирометр после спокойного вдоха и определить дыхательный объем (ДО). Для определения резервного объема выдоха (РОвыд) после спокойного обычного выдоха в окружающее пространство сделать глубокий выдох в спирометр. Для определения резервного объема вдоха (РОвд) установить внутренний цилиндр спирометра на каком-либо уровне (3000-5000), а затем, сделав спокойный вдох из атмосферы, зажав нос, сделать максимальный вдох из спирометра. Все измерения повторить три раза. Резервный объем вдоха можно определить по разнице:

РОвд = ЖЕЛ – (ДО – РОвыд)

Расчетным методом определить сумму ДО, РОвд и РОвыд, составляющую жизненную емкость легких (ЖЕЛ).

Результаты работы и их оформление. 1. Полученные данные оформите в виде таблицы 2.

2. Рассчитайте минутный объем дыхания.

Таблица 2

ЛАБОРАТОРНАЯ РАБОТА № 4

Общая ёмкость лёгких взрослого мужчины составляет в среднем 5-6 литров, однако при нормальном дыхании используется только малая часть этого объёма. При спокойном дыхании человек совершает порядка 12-16 дыхательных циклов, вдыхая и выдыхая в каждом цикле около 500 мл воздуха. Этот объём воздуха принято называть дыхательным объёмом. При глубоком вдохе можно дополнительно вдохнуть 1,5-2 литра воздуха - это резервный объём вдоха. Объем воздуха, который остается в лёгких после максимального выдоха составляет 1,2-1,5 литра - это остаточный объём лёгких.

Измерение лёгочных объёмов

Под термином измерение лёгочных объёмов обычно понимается измерение общей ёмкости лёгких (ОЕЛ), остаточного объёма лёгких (ООЛ), функциональной остаточной ёмкости (ФОЕ) лёгких и жизненной ёмкости лёгких (ЖЕЛ). Эти показатели играют существенную роль при анализе вентиляционной способности лёгких, они незаменимы при диагностике рестриктивных вентиляционных нарушений и помогают оценить эффективность проведённого терапевтического вмешательства. Измерение лёгочных объёмов может быть разделено на два основных этапа: измерение ФОЕ и проведение спирометрического исследования.

Для определения ФОЕ применяют один из трёх наиболее распространённых методов:

  1. метод разведения газов (метод газовой дилюции);
  2. бодиплетизмографический;
  3. рентгенологический.

Лёгочные объёмы и ёмкости

Обычно выделяют четыре лёгочных объёма - резервный объём вдоха (РОвд), дыхательный объём (ДО), резервный объём выдоха (РОвыд) и остаточный объём лёгких (ООЛ) и следующие ёмкости: жизненная ёмкость лёгких (ЖЕЛ), ёмкость вдоха (Евд), функциональная остаточная ёмкость (ФОЕ) и общая ёмкость лёгких (ОЕЛ).

Общая ёмкость лёгких может быть представлена как сумма нескольких лёгочных объёмов и ёмкостей. Ёмкость лёгких - сумма двух и более лёгочных объёмов.

Дыхательный объём (ДО) - объём газа, который вдыхается и выдыхается во время дыхательного цикла при спокойном дыхании. ДО следует рассчитывать как среднее значение после регистрации по меньшей мере шести дыхательных циклов. Окончание фазы вдоха называют конечно-инспираторным уровнем, окончание фазы выдоха - конечно-экспираторным уровнем.

Резервный объём вдоха (РОвд) - максимальный объём воздуха, который можно вдохнуть после обычного среднего спокойного вдоха (конечно-инспираторного уровня).

Резервный объём выдоха (РОвыд) - максимальный объём воздуха, который можно выдохнуть после спокойного выдоха (конечно-экспираторного уровня).

Остаточный объём лёгких (ООЛ) - объём воздуха, который остаётся в лёгких по окончании полного выдоха. ООЛ не может быть измерен непосредственно, его рассчитывают путём вычитания РОвыд из ФОЕ: ООЛ = ФОЕ – РОвыд или ООЛ = ОЕЛ – ЖЕЛ . Предпочтение отдаётся последнему способу.

Жизненная ёмкость лёгких (ЖЕЛ) - объём воздуха, который можно выдохнуть при полном выдохе после максимального вдоха. При форсированном выдохе этот объём называют форсированной жизненной ёмкостью лёгких (ФЖЕЛ), при спокойном максимальном (вдохе) выдохе - жизненной ёмкостью лёгких вдоха (выдоха) - ЖЕЛвд (ЖЕЛвыд). ЖЕЛ включает ДО, РОвд и РОвыд. ЖЕЛ в норме составляет приблизительно 70% ОЕЛ.

Ёмкость вдоха (Евд) - максимальный объём, который можно вдохнуть после спокойного выдоха (от конечно-экспираторного уровня). Евд равняется сумме ДО и РОвд и в норме обычно составляет 60–70% ЖЕЛ.

Функциональная остаточная ёмкость (ФОЕ) - объём воздуха в лёгких и дыхательных путях после спокойного выдоха. ФОЕ также называют конечным экспираторным объёмом. ФОЕ включает РОвыд и ООЛ. Измерение ФОЕ - определяющий этап при оценке лёгочных объёмов.

Общая ёмкость лёгких (ОЕЛ) - объём воздуха в лёгких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ = ООЛ + ЖЕЛ или ОЕЛ = ФОЕ + Евд . Последний способ предпочтительнее.

Измерение общей ёмкости лёгких и её составляющих широко применяется при различных заболеваниях и оказывает существенную помощь в диагностическом процессе. Например, при эмфиземе лёгких обычно отмечается снижение ФЖЕЛ и ОФВ1, отношение ОФВ1/ФЖЕЛ также снижено. Снижение ФЖЕЛ и ОФВ1 также отмечается у больных с рестриктивными нарушениями, но отношение ОФВ1/ФЖЕЛ не снижено.

Несмотря на это, отношение ОФВ1/ФЖЕЛ не является ключевым параметром при дифференциальной диагностике обструктивных и рестриктивных нарушений. Для дифференциальной диагностики этих вентиляционных нарушений необходимо обязательное измерение ОЕЛ и её составляющих. При рестриктивных нарушениях отмечается снижение ОЕЛ и всех её составляющих. При обструктивных и сочетанных обструктивно-рестриктивных нарушениях некоторые составляющие ОЕЛ снижены, некоторые повышены.

Измерение ФОЕ - один из двух основных этапов при измерении ОЕЛ. ФОЕ может быть измерена методами разведения газов, бодиплетизмографически или рентгенологически. У здоровых лиц все три методики позволяют получать близкие результаты. Коэффициент вариации повторных измерений у одного и того же обследуемого обычно ниже 10%.

Метод разведения газов широко применяется из-за простоты методики и относительной дешевизны оборудования. Однако у пациентов с тяжёлым нарушением бронхиальной проводимости или эмфиземой истинное значение ОЕЛ при измерении этим методом занижается, поскольку вдыхаемый газ не проникает в гиповентилируемые и невентилируемые пространства.

Бодиплетизмографический метод позволяет определить внутригрудной объём (ВГО) газа. Таким образом, ФОЕ, измеренная бодиплетизмографически, включает как вентилируемые, так и невентилируемые отделы лёгких. В связи с этим у пациентов с лёгочными кистами и воздушными ловушками данный метод даёт более высокие показатели по сравнению с методикой разведения газов. Бодиплетизмография - более дорогой метод, технически сложнее и требует от пациента приложения больших усилий и кооперации по сравнению с методом разведения газов. Тем не менее метод бодиплетизмографии предпочтительнее, поскольку позволяет более точно оценить ФОЕ.

Разница между показателями, полученными с помощью двух этих методов, даёт важную информацию о наличии невентилируемого воздушного пространства в грудной клетке. При выраженной бронхиальной обструкции метод общей плетизмографии может завышать показатели ФОЕ.

По материалам А.Г. Чучалина

Объемы дыхания определяются спирометрически и должны причисляться к наиболее показательным вентиляционным величинам.

Минутный объем дыхания

Под этим понимают количество воздуха, вентилируемое при спокойном дыхании за минуту.

Методика определения. Испытуемому, соединенному со спирографом, дают сначала возможность несколько минут привыкать к не совсем обычному для него дыханию. После того как имеющаяся вначале в большинстве случаев гипервентиляция уступит место спокойному дыханию, определяют минутный объем дыхания, умножая объем дыхания при вдохе на число дыханий в минуту. При неспокойном дыхании измеряют объемы, вентилируемые за каждое дыхание на протяжении минуты и результаты складывают.

Нормальные величины. Должный минутный объем дыхания получают, умножая должный основный обмен (должное число калорий за 24 часа в сопоставлении с общей поверхностью тела) на 4,73.

Полученные величины будут в пределах 6-9 л. На них влияют высота метаболизма (интенсивность) (например, тиреотоксикоз) и величина вентиляции мертвого пространства. Это позволяет иногда относить уклонения от нормы за счет патологии одного из этих факторов.

При замене дыхания воздухом на дыхание кислородом у здоровых лиц не происходит изменений в минутном объеме дыхания. Наоборот, при очень выраженной дыхательной недостаточности минутный объем при дыхании кислородом уменьшается и одновременно повышается потребление в минуту кислорода. Наступает «успокоение дыхания». Объясняется такой эффект лучшей артериализацией крови при дыхании чистым кислородом по сравнению с дыханием атмосферным воздухом. Это еще больше обращает на себя внимание при нагрузке.

Сравните с этим сказанное в разделе о кардио-пульмональном (сердечно-легочном) кислородном дефиците.

Проба на максимальный объем выдоха (проба Тиффно)

Под максимальным объемом выдоха понимают экспираторную работу легких за секунду, т. е. количество воздуха, выдыхаемой с силой за секунду после максимального вдоха.

Длительность выдоха у больных эмфиземой больше, чем у здоровых лиц. Этот факт, впервые зарегистрированный на спирометре Hutchinson, был затем подтвержден Tiffeneau и Pinelli, которые указали и на совершенно определенные соотношения его с жизненной емкостью.

В немецкой литературе количество воздуха, выдыхаемое в пробе за секунду, называется «полезной долей жизненной емкости», англичане говорят о «timed capacity» (емкость за определенный промежуток времени), во французской литературе применяется термин «capacite pulmonaire utilisable a l’effort» (легочная емкость, утилизируемая при усилии).

Эта проба приобретает особое значение потому, что она позволяет делать общие выводы о широте дыхательных путей и соответственно о величине сопротивления дыханию в бронхиальной системе, а также об эластичности легких, подвижности грудной клетки и силе дыхательной мускулатуры.

Нормальные величины. Максимальный объем выдоха выражается в процентах к жизненной емкости. У здоровых он равняется 70-80% жизненной емкости. При этом в первую половину секунды должно быть экспирировано не менее 55% имеющейся жизненной емкости.

У здоровых для полного выдоха после глубокого вдоха нужно 4 секунды. Через 2 секунды выдыхают 94%, через 3 секунды - 97% жизненной емкости.

Объем выдоха снижается с возрастом с 83% жизненной емкости в юности до 69% в старости. Этот факт подтвержден Gitter в его обширных исследованиях более чем на 1000 промышленных рабочих. Tiffeneau считает нормальным такой максимальный объем выдоха а первую секунду, который составляет 83,3% истинной или фактической емкости, Biicherl - 77,3% для мужчин и 82,3% для женщин.

Методика выполнения. Применяют спирограф, кимограф которого быстро передвигает ленту (не менее 10 мм/сек). После записи жизненной емкости обычным способом испытуемому предлагают еще раз сделать максимальный вдох, чуть задержать дыхание, потом быстро и насколько возможно глубоко выдохнуть. Некоторого упрощения можно достигнуть, если запись так называемой экспирограммы провести с одновременным определением жизненной емкости и максимального объема выдоха за один выдох после максимального вдоха.

Оценка. Проба Tiffeneau считается надежным критерием для распознавания обструкционного бронхита и обусловленной им эмфиземы. В этих случаях при нормальной жизненной емкости находят значительное снижение максимального объема выдоха, тогда как при рестриктивной вентиляционной недостаточности жизненная емкость хотя и снижена, но процентная доля максимального объема выдоха остается нормальной.

Так как причиной обструкционных нарушений наряду с органически обусловленными препятствиями в дыхательных путях может быть также функциональный спазм, для дифференциально-диагностического выявления подлинной причины рекомендуется проба с астмолизином.

Проба с астмолизином . После предварительного определения жизненной емкости и максимального объема выдоха вводят подкожно 1 мл астмолизина или гистамина и через 30 минут повторно определяют те же величины. Если полученные вентиляционные величины указывают на тенденцию к нормализации, то речь идет о функциональном компоненте обструкционного бронхита.

Статью подготовил и отредактировал: врач-хирург