Виды биологически активных веществ. Новости здоровья, медицины и долголетия

Биологически активные вещества лекарственных растений

1. Классификация биологически активных веществ

Растения

Органические вещества

Минеральные вещества

Вещества первичного биосинтеза

Вещества вторичного биосинтеза

Минеральные соли

Алкалоиды

Микроэлементы

Гликозиды

Углеводы

Сапонины

Органические кислоты

Дубильные вещества

Флаваноиды

Эфирные масла

Растительные гормоны

Витамины

Биологически активные вещества – это такие вещества, которые оказывают влияние на биологические процессы в организме человека и животных.

Они могут быть продуктами первичного (витамины, жиры, углеводы, белки) и вторичного биосинтеза (алкалоиды, гликозиды, дубильные вещества).

В растениях всегда содержится комплекс биологически активных веществ, но терапевтическим и профилактическим действием обладает одно или несколько. Их называют Действующими веществами и используют при производстве лекарственных препаратов.

В растениях также содержаться так называемые Сопутствующие вещества . Это условное название продуктов первичного и вторичного синтеза в растениях (ментол, папаверин, танин). Некоторые сопутствующие вещества позитивно влияют на организм человека, так как дополняют действие основного действующего вещества. Например, витамины, минеральные вещества, флаваноиды усиливают всасываемость действующих веществ, усиливают полезное действие или ослабляют вредное действие сильнодействующих соединений. Наряду с полезными сопутствующими веществами в растениях содержаться и вредные, которые необходимо удалять. Например, в семенах клещевины, кроме касторового масла содержится и вещество ядовитое вещество рицин, которое можно разрушить при термической обработке. В коре крушины содержатся окисленные гликозиды, которые оказывают лечебное действие, и неокисленные, которые вызывают боль в желудке и рвоту. Удалить эти вещества можно при термической обработке или при хранении в течение одного года.

Наряду с сопутствующими веществами выделяют группу Балластных веществ (фармакологически индифферентные). К ним в основном относятся продукты первичного синтеза. Понятие балластные – условное, так как и эти вещества влияют на организм человека и животного. Например, клетчатка стимулирует перистальтику кишечника, нормализует холестериновый обмен, усиливает выделение желудочного сока. Если эти вещества используют в медицине и фармации, то их относят к основным.

Все биохимические процессы в растении происходят в водной среде. Содержание воды в лекарственных растениях составляет 50-90%. Большая часть ее – в свободном состоянии, примерно 5% - в связанном. Поэтому растения сравнительно легко высыхают.

Все вещества растений можно разделить на две группы: минеральные и органические. Минеральные делятся на микроэлементы и макроэлементы.

2. Алкалоиды

Это сложные азотсодержащие соединения щелочного характера, которые вырабатываются в организме растений. Они могут быть кислородсодержащие (твердые) и безкислородные (жидкие). В растениях содержатся в форме солей блочной, щавелевой, лимонной, винной и других кислот. Алкалоиды есть во всех частях растения, но распределены неравномерно: у одних растений – в плодах, у других – в коре и корнях. Содержание алкалоидов зависит от экологических условий, биологических особенностей растения и стадии его развития.

Алкалоиды добывают из растений методом экстракции, одновременно с этим из сырья поступают дубильные вещества, слизи, смолы. Алкалоиды относятся к сильнодействующим веществам широкого спектра действия. Некоторые из них отличаются малой токсичностью и избирательным действием, так как в организме животных разлагаются на производные, сходные с присущими для их биосинтеза. Например, алкалоиды группы кофеина (производные пурина) распадаются в организме на гипоксантин, ксантин и мочевинную кислоту. В организме животных подобный распад есть в белковом обмене. Поэтому токсичность низкая.

Сами алкалоиды в воде не растворяются, но их соли растворяются хорошо. Содержание их в растениях от следовых количеств до 2-3% в сухом продукте (в хинной коре до 16%). Большинство растений содержит несоколько разных алкалоидов, например в маке снотворном и чистотеле их по 26. Образование алкалоидов присуще для растений из семейств маковых, лютиковых, пасленовых, бобовых.

Самые известные алкалоиды: морфин – в головках мака снотворного, атропин – белладонна обыкновенная, никотин – в листьях табака. К этой группе относят и некоторые стимуляторы нервной системы – производные ксантина – кофеин – в семенах кофейного дерева, колы и какао, листьях чайного куста; теобромин – в семенах какао, теофилин – в чайных листьях.

Лекарства, сделанные на основе алкалоидов, оказывают сложное и многостороннее действие на организм. Они активизируют деление клеток, повышают артериальное давление, усиливают общий обмен веществ, улучшают секрецию пищеварительных желез.

Из алкалоидных растений чаще всего используют мак снотворный, чистотел большой, барбарис обыкновенный, головатень круглоголовый, головня ржи, листья чая, корень раувольфии обыкновенной, семена ореха рвотного.

3. Гликозиды

Состоят из соединений глюкозы или других сахаров с разными веществами. Гликозиды легко распадаются на углеродную часть – гликон и одну или несколько несахаристых соединений – агликоны или генины. Агликоны гликозидов по химическому строению бывают алифатическими, ароматическими, гетероциклическими соединениями.

Лекарственными свойствами обладают агликоны. Но в чистом виде они плохо растворяются в воде и из-за этого плохо всасываются желудочным трактом и усваиваются. В то же время, гликозиды легко растворяются и всасываются и поэтому более активны.

К алкалоидам относятся: альдегиды, алкалоиды, спирты, терпены, флавоны, органические кислоты. Распад гликозидов происходит при кипячении в воде, нагревании с разведенными кислотами или основаниями, а также под действием ферментов – гликозидаз. Гликозиды – преимущественно кристаллические, реже – аморфные вещества, хорошо растворяющиеся в воде, спирте, горькие на вкус. Из растений их экстрагируют водой или этанолом низкой концентрации.

В зависимости от химической природы гликозиды подразделяют на три группы:

1. О-гикозиды, агликоны которых не содержат азота (гликозиды группы наперстянки), наиболее часто встречающиеся в природе

2. N-гликозиды, в составе агликонов которых есть азот (нитрилгликозиды, циангликозиды - амигдалин)

Амигдалин образуется в семенах косточковых фруктовых пород (абрикос, вишня, миндаль, слива, персик, терн и другие), а также при экстремальных условиях (вытаптывание, градобой, ливень) в сорго обыкновенном, суданской траве, клевере полевом и ползучем, льне полевом. Амигдалин, расщепляясь образует синильную кислоту (сильный яд).

3. S-гликозиды, агликоны которых содержат азот и серу (тиогликозиды, горчичные гликозиды)

В медицине используют такие основные группы этих соединений:

А) фенилгликозиды, которые в агликоне содержат фенильный радикал (одноатомные и многоатомные фенолы);

Б) антрагликозиды, в составе которых есть проиводное антрахинона (выделены из крушины, ревеня, алоэ)

В) флавоновые гликозиды, агликон которых – производное флавона (рутин, катехин)

Г) стероидные гликозиды или сердечные (О-гликозиды), в агликоне содержат стероидную группу и действуют на сердечную мышцу (гликозиды ландыша майского, горицвета весеннего, наперстянки).

Д) тиогликозиды – наименее распространенная группа среди растений. Они содержат серу, обнаружены в семенах растений семейства капустные.

По действию на организм выделяют такие гликозиды: сердечные, антрагликозиды, тиогликозиды, сапонины, горькие (несердечные) гликозиды.

1. Сердечные или стероидные гликозиды.

Химические соединения, действующие на сердечную мышцу, усиливая ее сокращение (кардиотоническое влияние). Некоторые из них успокаивающе действуют на центральную нервную систему. При передозировке могут вызвать летальный исход.

Химический состав их однотипный. Их агликоны являются производными циклопентано-пергидрофенантрена и принадлежат к классу стероидов.

Сердечные гликозиды уменьшают содержание ионов калия в клетках и повышают содержание ионов натрия и кальция, улучшают процесс проникновения сахаров через клеточную мембрану, активизируют клеточное дыхание, увеличивают общее содержание белков или увеличивают количество небелкового азота. Эта группа гликозидов нормализует ферментативные процессы углеводно-фосфорного обмена в сердечной мышце и облегчает усвоение ими АТФ.

Сердечные гликозиды содержат горицвет весенний, наперстянка, ландыш майский, строфант.

2. Антрагликозиды

Агликоны этой группы гликозидов представляют собой мономеры: антранолы, антроны, антрахиноны и их димеры. Они содержатся в алоэ, коре и плодах крушины ломкой, листьях и корнях ревеня. Содержание действующих веществ в алоэ древовидном не менее 18%, в листьях сены 2,5-3%, в коре крушины ломкой – до 7%, в корнях ревеня 2,6%. Экстракты и отвары смеси антрагликозидов проявляют более сильный эффект, чем выделенные в чистом виде. Оказывают синергическое действие по отношению к другим препаратам, и антагонистическое по отношению к дубильным веществам.

3. Триогликозиды.

Соединения, в состав агликонов которых входит сера, принимающая участие в освобождении сахаристого компонента. Эти соединения горькие, острые на вкус. Они возбуждают аппетит, способны раздражать слизистые оболочки и кожу, благодаря чему усиливают кровеоборот при внешнем применении, проявляют активное бактерицидное и бактериостатическое действие на патогенные группы микроорганизмов, вызывающих воспаление кожи, подкожной основы и мышц. В небольшом количестве возбуждают аппетит, усиливают кровеоборот.

4. Сапонины

Это гетерозидные соединения стероловых или тритерпеновых агликонов с разными сахарами (глюкоза, рамноза, арабиноза, галактоза), а также с глюкуроновой кислотой. Они содержаться в многих растениях, особенно из семейств первоцветных и гвоздичных, а в некоторых (мыльнянка аптечная, первоцвет весенний, остудник голый) накапливаются в значительном количестве. Сапонины хорошо растворяются в воде, образуя коллоидные растворы, а при вибрации – густую пену. Даже в очень концентрированных растворах они находятся в молекулярном или ионном состоянии. Характерная особенность сапонинов – их способность образовывать сложные соединения с определенными алкоголями и фенолами, особенно с холестерином. Такого типа соединения дают возможность сапонинам находиться в инертном состоянии, и лишь при разложении под действием высокой температуры их действие активизируется.

– стероидные сапонины принадлежат к группе природных гликозидов, которым свойственная высокая гемолитическая активность. Они обнаружены в растениях разных семейств, но главным образом, в растениях семейств диоскорейные, бобовые, лютиковые, лилейные. Стероидные сапонины обладают фунгицидным, противоопухолевым, цитостатическим действием. Они понижают артериальное давление, нормализируют сердечный ритм, делают дыхание более ровным и глубоким. Эти сапонины используются как производное сырье для синтеза стероидных гормонов.

– тритерпеновые сапонины в большинстве обладают гемолитическим действием. Они разрушают оболочку эритроцитов и освобождают гемоглобин. Сапонины имеют едкий горький вкус, раздражают слизистую оболочку глотки, желудка и кишечника, вызывают рвоту и усиливают бронхиальную секрецию. Их назначают при тяжелом легочном кашле для откашливания.

Сапонины разных растений обладают разным действием. Так сапонины солодки голой имеют эстрогенную активность, элеутерококка – повышают иммунитет, женьшеня – дают адаптогенный эффект.

Сапонины способствуют выделению желчи и ее разреженности, активизируют выделение желудочного и кишечного сока, сока поджелудочной железы.

Растительные препараты с содержанием сапонинов, принимаемые перорально, даже в небольших дозах раздражают нервные окончания слизистой желудка и вызывают тошноту. Одновременно вызывается раздражение дыхательного центра, углубляется и учащается дыхание. Образующаяся водянистая слизь облегчает кашель, а усиленное дыхание способствует удалению слизи из дыхательных путей.

Сапонины увеличивают проницаемость стенок слизистой оболочки пищеварительного канала и улучшают всасываемость солей кальция, железа, сердечных гликозидов. Эта их особенность имеет большое значение для усвоения витаминов или минеральных солей, содержащихся в томатах, фасоли и других плодах и овощах, в которых есть сапониновые гликозиды.

Сапонины, введенные парентерально (внутримышечно или подкожно) раздражают ткани, вызывают их воспаление, нагноение, некроз. Действуют как сильнейший протоплазматический яд. В первую очередь действие сапонинов проявляется на паренхиматозных органах. Значительно поражается капиллярная система печени, почек, сердечной мышцы, возникают кровеизлияния и деструктивные изменения в альвеолярной системе легких и тонкого кишечника.

Образуя комплексные соединения с холестерином и стероидными веществами, сапонины приводят к гемолизу, гемолитической анемии, тяжелых повреждений гемопоетической функции и костного мозга. Некоторые из них (токсические) чрезмерно усиливают гемолиз эритроцитов, а другие (малотоксичные), наоборот, замедляют этот процесс: соединяются с альбуминами крови в достаточно устойчивые комплексы.

Введенные внутримышечно в большом количестве, они сначала возбуждают, а потом поражают важные отделы головного и спинного мозга, дыхательный центр, сердечную мышцу.

Сапонинсодержащие растения используются в медицине как отхаркивающие средства при заболеваниях дыхательных путей, как мочегонные, общеукрепляющие, стимулирующие, тонизирующие лекарства. Значительную их часть применяется при лечении болезней сердечно-сосудистой системы, как седативные и противосклеротичные средства. Эффективны при лечении атеросклероза сосудов головного мозга, атеросклерозе совместно с гипертонической болезнью и злокачественными новообразованиями.

5. Горькие (несердечные) гликозиды

Очень горькие на вкус. В отличие от горьких алкалоидов и горьких сердечных гликозидов не опасны и применяются в медицинской практике для усиления секреторной функции желудка, лучшего усвоения пищи. К горьким гликозидам относятся абсинтин (из полыни горькой), аукубин (из вероники лекарственной), эритаурин (из золототысячника малого). Горькие гликозиды относят также к группе горечей.

6. Гликоалколоиды

В растениях образуются как «гибриды» между алкалоидами и гликозидами. Впервые был выделен гликоалкалоид из ягод паслена черного, который долгое время не находил применения в медицине. Долгое время для синтеза гормонов, и в частности кортизона, использовали кору надпочечников, что было экономически невыгодно. В 1935 году из них добывали 20 гормонов для медицины. Эти вещества применяют как мощный регулятор обмена веществ в организме.

Необходимо было найти растительный аналог для получения гормонов. Таким растением оказался паслен дольчатый, произрастающий в Австралии. В этом растении содержатся наиболее сложно синтезируемые молекулы соласодина для фармацевтической промышленности по производству гормональных препаратов.

Растения вырабатывают огромное количество сложных химических соединений, не образующихся в животном организме. Растения являются единственными в природе организмами, способными синтезировать из углекислого газа, воды и неорганических веществ огромное количество различных органических соединений, необходимых для жизнедеятельности животных организмов, в том числе и человека.

Р а с т е н и е
Вода 70-90% Сухой остаток 10-30%
Органические вещества Минеральные вещества
Макроэлементы Микроэлементы
Вещества первичного синтеза Вещества вторичного синтеза
Аминокислоты Вита мины Белки Ферменты Углеводы Липиды Органические кисло-ты Терпены Алкалоиды Гликозиды Фенольные соединения

В фармакогнозии принято все вещества, встречающиеся в растениях, делить на действующие или биологически активные (БАВ), сопутствующие и балластные.

Действующие вещества – соединения, которые называют еще фармакологически активными, определяют основное или основные направления применения лекарственного сырья.

Сопутствующие вещества – определяют менее выраженное фармакологическое действие, способствуют всасыванию действующих веществ или улучшают их растворимость (сапонины в листьях наперстянки способствуют всасыванию сердечных гликозидов), но могут определять и побочное действие лекарственного сырья (смолистые вещества в листьях сенны).

Балластные вещества - к ним в настоящее время относят клетчатку, но она также не бесполезна для организма человека.

Растения на 70-90% состоят из воды, которая является основной внутриклеточной средой, в которой протекают все биохимические процессы. Вода является активным участником этих процессов и одним из источников образования органических соединений.

Кроме воды, растения состоят из неорганических и органических веществ.

На долю неорганических (минеральных) веществ приходится от 3 до 25% массы сухого остатка.

Минеральные вещества.

Обнаруживаются в золе при сжигании растений. По количественному содержанию в растении подразделяются на макро- и микроэлементы.

Макроэлементы содержатся от десятых до сотых долей %: калий, кальций, натрий, магний, фосфор, сера, кремний, хлор.

Микроэлементы содержатся в тысячных или стотысячных долях %: железо, марганец, медь, бор, цинк, барий, йод, бром, литий, никель, алюминий.

Калий – соли калия способствуют регуляции сократительной деятельности сердца, удаляют из организма воды и хлорида натрия, ощелачиванию мочи, входят в состав компонентов крови, способствуют передаче нервного импульса.

Кальций– соли кальция способствуют образованию костной ткани, необходимы для нормальной свертываемости крови, для поддержания нормальной нервно-мышечной возбудимости.

Магний – входит в состав костей, зубов, входит в состав ферментов, необходим для нормальной возбудимости нервной системы.

Железо – 75% всего железа в организме входит в состав гемоглобина.

Марганец – оказывает влияние на кроветворение, иммунитет, рост, размножение человека.

Медь – без меди невозможен синтез гемоглобина, она способствует обмену в организме витаминов А, С, Е, Р.

Минеральные вещества играют важную роль в обмене веществ, образовании ферментов, гормонов и т.д.

Основную массу сухого остатка растений составляют органические вещества. Среди них различают вещества первичного синтеза и вещества вторичного синтеза.

Вещества первичного синтеза.

Вещества первичного синтеза образуются в процессе ассимиляции, т.е. превращения веществ, поступающих извне, в вещества самого организма (протопласт клеток, запасные вещества и т. д). К веществам первичного синтеза относят углеводы, белки, липиды, ферменты, витамины, аминокислоты и органические кислоты.

Липиды - жиры, жирные масла и жироподобные вещества. Они представляют собой смеси сложных эфиров высших жирных кислот и глицерина. Липиды представляют собой один из основных источников энергетических и обменных процессов живых клеток. В организме человека синтезируются не все необходимые ему жирные кислоты. Линоленовая и арахидоновая кислоты поступают только с пищей, в основном растительной. Недостаток этих жирных кислот может привести к развитию атеросклероза. Как правило, в растениях содержится небольшое количество жирных масел, за исключением семян маслянистых культур. В медицинской практике растительные масла используют либо как лекарственные препараты для внутреннего и наружного применения (касторовое масло), либо как вспомогательные вещества при изготовлении различных лекарственных форм – масляных эмульсий и суспензий, мазей, инъекционных растворов и т.д.

Аминокислоты - делятся протеиногенные (входят в состав белков – их около 20) и непротеиногенные (встречаются в растениях в свободном виде – их около 200). В последние годы большое внимание уделяется аминокислотам, как биологически активным веществам, которые могут быть использованы в лечебной практике. Особое место среди аминокислот занимают 8 незаменимых аминокислот (триптофан, фенилаланин, лизин, треонин, валин, лейцин, изолейцин и метионин). Они необходимы для поддержания жизни животных и человека и поступают в их организм только из растений. Некоторые аминокислоты – глютаминовая кислота, метионин, являются лекарственными средствами, однако получают их синтетическим путем, из растений не выделяют.

Белки - являются основой протоплазмы всех живых клеток, участвуют в процессах биосинтеза, являются эффективным энергетическим материалом. Это высокомолекулярные азотсодержащие соединения, в состав которых входят углерод, кислород, водород, азот, сера и иногда фосфор. В растениях находятся главным образом в виде коллоидных растворов. Белки бывают простые и сложные.

Основу белков составляют аминокислоты. Простые белки состоят из аминокислот, а сложные белки, или протеиды, представляют собой соединения белка с веществами небелковой природы. В липопротеидах этим веществом являются жироподобные вещества – липоиды, в глюкопротеидах – какое либо высокомолекулярное углеводное соединение, в нуклеопротеидах – нуклеиновая кислота. Белки и аминокислоты оказывают благоприятное неспецифическое действие на организм больного. Они влияют на синтез белков, создают условия для усиленного синтеза иммунных тел, что приводит к повышению защитных сил организма. Улучшенный синтез белков включает также и усиленный синтез ферментов, вследствие чего улучшается обмен веществ.

Ферменты - занимают особое место среди белков. Роль ферментов в растении специфична, они являются катализаторами большинства химических реакций. Все ферменты делятся на два класса: однокомпонентные и двухкомпонентные. Однокомпонентные ферменты состоят только из белков, двухкомпонентные – из белка (апофермента) и небелковой части (кофермента). Коферментами могут быть витамины. В медицинской практике используются препараты на основе ферментов, например, «Нигедаза» из семян чернушки дамасской при панкреатитах и энтероколитах.

Органические кислоты - наряду с углеводами и белками, являются самыми распространенными веществами в растениях. Они принимают участие в дыхании растений, биосинтезе белков, жиров и других веществ. Органические кислоты относятся к веществам как первичного синтеза (яблочная, уксусная, щавелевая, аскорбиновая), так и вторичного синтеза (урсоловая, олеановая). Органические кислоты являются фармакологически активными веществами и участвуют в суммарном эффекте препаратов и лекарственных форм растений:

· Салициловая и урсоловая кислоты обладают противовоспалительным действием;

· Яблочная и янтарная кислоты – доноры энергетических групп, способствуют повышению умственной и физической активности;

· Аскорбиновая кислота – витамин С.

Углеводы - входят в состав клеток всех растений. Высушенное растение содержит 70 – 80%углеводов.

Моносахариды - это углеводы, молекулы которых состоят из 2-7 атомов углерода и карбонильной группы. В зависимости от количества атомов углерода их называют тетрозами, пентозами, гексозами. В растениях чаще встречаются пентозы и гексозы. Наиболее распространены глюкоза, фруктоза, галактоза, сорбоза, арабиноза. Перечисленные сахара встречаются как в свободном виде в плодах и семенах, так и служат основой для сахаров более сложной структуры. В виде индивидуального лекарственного вещества используется глюкоза.

Олигосахариды - углеводы, состоящие из двух-трех остатков моносахаридов, чаще всего гексоз. Наиболее часто в растениях встречаются дисахариды. К ним относятся сахароза – свекловичный или тростниковый сахар, состоящий из молекул глюкозы и фруктозы. Мальтоза – солодовый сахар, состоящий из молекул глюкозы. Лактоза - молочный сахар, построен из молекул глюкозы и галактозы. Применяются в медицине в качестве вспомогательных веществ при изготовлении порошков, таблеток, пилюль.

Полисахариды - высокомолекулярные вещества, содержащие более 10 разнообразных моносахаридных или олигосахаридных остатков, образующих линейные или разветвленные цепи.

Гомополисахариды состоят из моносахаридных единиц одного типа (крахмал, клетчатка, гликоген, инулин).

Гетерополисахариды состоят из остатков различных моносахаров и их производных (пектиновые вещества, слизи, камеди).

Крахмал – важнейший полисахарид, содержащийся в корнях, корневищах, клубнях растений. Состоит из амилозы и амилопектина, в основе которых лежит молекула глюкозы. Широко используется в виде вспомогательного вещества при изготовлении присыпок, таблеток и т.д.

Инулин – запасающее вещество семейства Астровые. Основным моносахаридом является фруктоза. Используется для получения фруктозы, а также снижает уровень сахара в крови при сахарном диабете.

Клетчатка – полисахарид, из которого строится оболочка растительных клеток. Основной структурной единицей является глюкоза. Клетчатка стимулирует моторную функцию органов пищеварения, усиливает выделение пищеварительных соков, нормализует состав кишечной флоры, способствует выведению из организма холестерина, что имеет значение для профилактики и лечения гипертонической болезни и атеросклероза.

Пектиновые вещества – высокомолекулярные гетерополисахариды, главным компонентом которых является Д-галактуроновая кислота. В растениях присутствуют преимущественно в виде пропектина, составляющего большей частью межклеточное вещество и первичные стенки молодых растительных клеток. Они предохраняют растение от высыхания, повышают морозоустойчивость, влияют на прорастание семян. Пектиновые вещества находятся в состоянии динамического равновесия, превращаясь друг в друга. При созревании плодов не растворимый пропектин переходит в растворимые формы. Эти соединения склонны к набуханию, при растворении образуют вязкие растворы. Пектиновые вещества оказывают противовоспалительное, противоязвенное, гипотензивное действие, способствуют выведению из организма тяжелых металлов, радионуклеидов, холестерина.

Камеди – продукты, выделяющиеся в виде вязких растворов из надрезов и трещин растений (слива, вишня и т.д.). Относятся к гетерополисахаридам. Используются в медицине в качестве стабилизаторов при приготовлении эмульсий и суспензий.

Слизи – гетерополисахариды, образующиеся в растениях в результате естественного «слизистого» перерождения клеток (эпидермиса, отдельных клеток коровой и древесной паренхимы, межклеточного вещества и клеточных стенок). Состоят из остатков моносахаров (ксилоза, арабиноза), уроновых кислот и их солей.

Распространение в природе. Слизи часто образуются в водорослях, растениях семейств Мальвовые, Подорожниковые, Астровые, Льновые. Служат для растений резервуаром воды, защищая их от пересыхания, запасом питательных веществ (резерв углеводов), способствуют прорастанию семян и их распространению.

Способствуют накоплению слизи тепло, влажность, световая энергия. Влияют возраст и фаза вегетации: в подземных органах максимальное количество слизи накапливается к периоду увядания растений, в плодах – в период полного созревания.

Физико-химические свойства. Слизи обычно бывают в виде водных вязких и клейких коллоидных растворов. Они бесцветные или желтоватые, без запаха, слизистого или сладковатого вкуса. Из сырья извлекаются водой, образуя коллоидные растворы. Осаждаются спиртом. Под воздействием разбавленных кислот и ферментов легко гидролизуются на отдельные моносахариды.

Качественные реакции. Метиленовый синий окрашивает слизь в голубой цвет. Под влиянием раствора NaОН они приобретают лимонно-желтоватый цвет. На фоне раствора черной туши (1 часть черной туши + 9 частей воды) слизь имеет вид бесцветных сгустков.

Заготовка сырья. Сырье следует собирать только в сухую погоду, т.к. оно легко ослизняется, в период максимального накопления слизи в лекарственном сырье. При необходимости его быстро моют в холодной проточной воде.

Сушка сырья. Тонким слоем при хорошей вентиляции и частом перемешивании. Оптимальная температура сушки 50 – 60 о С.

Хранение сырья. В сухом месте. Сырье гигроскопично и легко отсыревает, плесневеет, прокисает, темнеет, поражается микроорганизмами. Сырье защищают от амбарных вредителей, т.к. оно содержит большое количество питательных веществ.

Применение сырья в медицине. Слизи оказывают обволакивающее, гастропротекторное, противовоспалительное, мягчительное, отхаркивающее, легкое слабительное действия.

Витамины - сложные, биологически активные органические соединения разнообразной химической природы. Витамины имеют большое значение для нормального обмена веществ, они участвуют во всех биохимических процессах, являясь коферментами ферментов.

Классификация по растворимости. Их подразделяют на 2 большие группы:

Жирорастворимые , к которым относятся ретинол (вит. А), кальциферолы (вит.гр.Д), токоферолы (вит.гр.Е), филлохиноны (вит.гр.К).

Водорастворимые, к которым относятся аскорбиновая кислота (вит. С), витамины группы В (тиамин, рибофлавин, пантотеновая кислота, пиридоксин, фолиевая кислота, цианокобаламин, пангамовая кислота), никотиновая кислота (вит.РР) , витамины гр. Р, витамин У.

К витаминоподобным соединениям относят некоторые флавоноиды, липоевую, оротовую, пангамовую кислоты, холин, инозит.

Витамин А (ретинол) – содержится в продуктах животного происхождения, в растениях содержатся каротиноиды, которые в печени и стенках кишечника при наличии в пище жиров, желчи и некоторых ферментов распадаются с образованием 1 или 2 молекул ретинола.

Показания к применению: заболевания глаз, заболевания кожи, ОРВИ, воспалительные заболевания кишечника, хронический гастрит, цирроз печени, каротиноиды оказывают ранозаживляющее, противовоспалительное, радиопротекторное действия, служат для профилактики злокачественных новообразований.

Витамин К (филлохинон) – обеспечивает нормальное состояние свертывающей системы крови.

Показания к применению: кровотечения различного происхождения.

Витамин С (аскорбиновая кислота) – участвует в окислительно-восстановительных процессах, регулирует обмен веществ, повышает иммунитет, стимулирует рост, стимулирует внутреннюю секрецию, способствует регенерации тканей. Источником служат только растения. Особенно богаты этим витамином плоды шиповника, черной смородины, облепихи, лист первоцвета и т.д.

Витамин Р (рутин, кверцетин) – соединения, нормализующие нормальную проницаемость капилляров. При его недостатке капилляры становятся излишне хрупкими, что приводит к мелким кровотечениям и кровоподтекам. Источником служат плоды черной смородины, рябины черноплодной, чай.

Сбор сырья, содержащего витамины, производится в сухую погоду в период максимального накопления преобладающего витамина.

Сушка сырья проводится тонким слоем при частом перемешивании. Температурный режим сушки для сырья, содержащего витамин К – 40-50 о С, каротиноиды – 50-60 о С. Плоды шиповника богатые аскорбиновой кислотой рекомендуется сушить при 80-90 о С, чтобы инактивировать ферменты и сократить время сушки, сохранить витамин С.

Хранение сырья: в сухом, хорошо проветриваемом помещении, оберегая от внешнего воздействия и амбарных вредителей.

Вещества вторичного синтеза

Вещества вторичного синтеза образуются в растениях в результате диссимиляции. Диссимиляция – процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся большим выделением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вторичного синтеза. Например, глюкоза (вещество первичного синтеза) распадается до уксусной кислоты, из которой синтезируется мевалоновая кислота и через ряд промежуточных продуктов – все терпены.

К веществам вторичного синтеза относятся терпены, гликозиды, фенольные соединения, алкалоиды. Все они участвуют в обмене веществ и выполняют важные для растения функции.

Среди соединений вторичного синтеза следует отметить несколько групп веществ, обладающих наиболее выраженным фармакологическим действием на организм человека. К этим соединениям в первую очередь применим термин биологически активные вещества (БАВ).

Алкалоиды большая группа природных азотсодержащих соединений основного характера.

Из природных фармакологически активных веществ алкалоиды являются основной группой, из которой современная медицина черпает наибольшее количество высокоэффективных лекарственных средств.

Распространение в природе. Алкалоидосодержащие растения составляют примерно 10% от всей мировой флоры. Обычно растения содержат несколько алкалоидов (кора хинного дерева содержит более 30 алкалоидов). Наиболее богаты алкалоидами растения семейств маковые, пасленовые, лютиковые, лилейные, хвощевые, эфедровые. В растениях алкалоиды находятся в виде солей органических кислот (щавелевой, винной, лимонной и др.). Они растворены в клеточном соке. Известны алкалоиды, которые находятся в растениях в виде оснований: кофеин, кодеин. Содержание алкалоидов в сырье может быть различным, например, лист белены содержит около 0,15% алкалоидов, хинная кора – до 15%. В настоящее время из растений выделено более 5000 алкалоидов, для 3000 установлено строение. Алкалоиды могут накапливаться в различных частях растений: листьях, плодах, семенах, коре, подземных органах. Биологическая роль алкалоидов еще окончательно не выяснена, но в последние годы предпочтения отдаются их активной роли в обмене веществ, их считают своеобразными регуляторами биохимических процессов.

Факторы,влияющие на накопление алкалоидов:

Климат – наибольшее число алкалоидоносных видов, причем с высоким содержанием алкалоидов, встречаются в странах с жарким тропическим климатом. Например, красавка, выращенная в Средней Азии, содержит больше алкалоидов, чем выращенная в Швеции.

Влажность – повышенная (против нормы) влажность может снижать содержание морфина в коробочках мака, в сухое жаркое время повышается содержание эфедрина в эфедре хвощевой.

Температура воздуха – заморозки действуют на алкалоиды губительно. После заморозков траву чемерицы поедают животные без вредных последствий.

Освещенность – листья красавки, выращенной на свету, содержит больше алкалоидов, чем выращенная в тени.

Почва – для каждого вида свои определенные почвенные условия. Например, Солянка Рихтера на песчаной почве накапливает алкалоидов больше, чем на глинистой. Внесение азотсодержащих удобрений повышает содержание алкалоидов.

Высота над уровнем моря – для некоторых растений существует определенная высота над уровнем моря, когда растение накапливает максимальное количество алкалоидов. Например, для хинного дерева – 1500-2000 м, для табака около 2000 м.

Возраст растения - молодые растения и более молодые части растений часто накапливают больше алкалоидов.

Фаза вегетации – в определенные периоды развития растения содержат максимальное количество алкалоидов.

Время суток – для некоторых растений также играют роль. Например, Солянка Рихтера в ночные и утренние часы содержит больше алкалоидов, чем днем.

Индивидуальные особенности – растения, произрастающие в одинаковых условиях, могут содержать различное количество алкалоидов.

Классификация. Существует несколько классификаций алкалоидов: ботаническая (алкалоиды мака), фармакологическая (алкалоиды, действующие на нервную систему). В фармакогнозии принята классификация А. П. Орехова, основанная на химическом строении алкалоидов. Всего выделено 13 группп:

Ациклические алкалоиды – содержат атом азота в боковой цепи (эфедрин).

Производные пирролидина и пирролизидина – платифиллин.

Производные пиридина и пиперидина – анабазин, лобелин.

Производные тропана – атропин, скополамин.

Производные хинолина – хинин, хинидин.

Производные изохинолина – морфин, папаверин.

Производные хинолизидина – термопсин.

Производные индола – резерпин.

Производные пурина – кофеин.

Стероидные алкалоиды – иервин.

Другие группы имеют ограниченное применение.

Физико-химические свойства. По физическим свойствам различают алкалоиды, содержащие кислород, и бескислородные алкалоиды.

Кислородосодержащие алкалоиды – кристаллические вещества с определенной температурой плавления, большинство бесцветные, реже – окрашенные. Например, алкалоид барбариса берберин – желтый.

Бескислородные – маслянистые летучие жидкости (легко перегоняются с водяным паром) с неприятным запахом (анабазин, никотин, кониин).

Алкалоиды имеют горький вкус, почти все не обладают запахом (кроме бескислородных).

Большинство алкалоидов оптически активны. Некоторые алкалоиды флюоресцируют в УФ-свете. Например, цитизин - фиолетовым, берберин – желто-зеленым цветом.

Алкалоиды образуют соли разной степени прочности. Соли алкалоидов хорошо растворимы в воде и этиловом спирте, плохо растворимы или совсем не растворимы в органических растворителях (эфир, флороформ). Соли алкалоидов легко разлагаются под действием едких щелочей и аммиака. При этом выделяются свободные основания.

Алкалоиды-основания обычно мало растворяются в воде, но легко растворяются в органических растворителях. Исключения: цитизин, кофеин, кодеин хорошо растворимы и в воде, и в органических растворителях.

Алкалоиды образуют нерастворимые или мало растворимые комплексы с солями тяжелых металлов, высокомолекулярными органическими веществами кислого характера.

Кроме того, имеют место и другие свойства в зависимости от строения алкалоида. Например, морфин имеет в своем строении ОН-группу и проявляет все свойства фенолов.

Анализ сырья (качественное и количественное определение алкалоидов) проводится на основании их физико-химических свойств по методикам указанным в соответствующем нормативном документе.

Сбор сырья, содержащего алкалоиды. Сбор сырья проводят в фазу максимального накопления алкалоидов. Сырье ядовито, поэтому все этапы заготовительного процесса осуществляют с соблюдением мер предосторожности.

Сушка сырья – сушат сырье сразу после сбора в сушилках при температуре 40-60 градусов. Допускается воздушно-теневая или, для отдельных видов сырья, солнечная.

Пути использования сырья. Незначительная часть сырья реализуется населению через аптеки (трава чистотела), значительная часть используется для получения галеновых препаратов (настойки, экстракты) и сборов. Наибольшая часть – используется промышленностью для выделения алкалоидов в чистом виде и выпуска их в различных лекарственных формах (таблетки, ампулы, комплексные препараты).

Терпены – природные растительные углеводороды алифатические или циклические, молекулы которых состоят из изопреновых звеньев.

Изопрен (С 5 Н 8) – это 5-углеродное соединение с разветвленной цепью и двумя сопряженными двойными связями. Сам изопрен широко распространен в растениях, но присутствует в малых количествах и лекарственным действием не обладает.

В растениях чаще встречаются кислородосодержащие терпены – терпеноиды.

Терпены классифицируют по количеству изопреновых звеньев:

1. Монотерпены – или собственно терпены (состоят из 2 изопреновых звеньев). Являются агликонами монотерпеновых (горьких) гликозидов и входят в состав эфирных масел.

2. Сесквитерпены - (состоят из 3 изопреновых звеньев). Входят в состав эфирных масел.

3. Дитерпены - (состоят из 4 изопреновых звеньев). Представителями этой группы являются витамин А и спирт фитол. Фитол входит в состав хлорофилла и витаминов группы К.

4. Тритерпены - (состоят из 6 изопреновых звеньев). Являются агликонами тритерпеновых сапонинов.

5. Тетратерпены - (состоят из 8 изопреновых звеньев). К этой группе относят каротиноиды.

6. Политерпены – представителями данного класса терпенов являются растительные полимеры: каучук, гуттаперча.

Эфирные масла – летучие жидкие смеси органических веществ, вырабатываемые растениями и обуславливающие их запах.

Из ЭМ выделено более 1000 компонентов (терпеноиды – монотерпеноиды, сесквитерпеноиды, ароматические терпеноиды, а также различные типы углеводородов, спирты, кетоны, сложные эфиры и др.).

Распространение в природе. Эфироносные растения широко представлены в растительном мире. Особенно богаты ЭМ растения тропиков и субтропиков, часто встречаются умеренном климате, а многие из них встречаются повсеместно. Богатством эфироносов характеризуются семейства яснотковые, астровые, сельдерейные, миртовые, розовые, рутовые, лавровые, померанцевые. Могут накапливаться в различных частях растений (надземных и подземных) в различных количествах – от тысячных долей % в цветках фиалки до 25% в бутонах гвоздики. ЭМ накапливаются в специальных образованиях, которые по местонахождению подразделяются на эндогенные и экзогенные. К экзогенным относят железистые пятна (лепестки роз), железистые волоски на эпидерме листьев, железки различных типов. К эндогенным образованиям, развивающихся в паренхимных тканях, относят вместилища (девясил, эвкалипт, лимон), отдельные клетки (корневища аира), группы клеток (корневища с корнями валерианы), канальца (плоды сельдерейных), ходы (древесина хвойных). Разные виды растений редко содержат одинаковые по составу ЭМ, даже в одном и том же растении в разных частях содержатся разные по составу ЭМ. Значение ЭМ для растений полностью не выяснено. Считают, что они принимают участие в обмене веществ, предохраняют растения от перегревания или переохлаждения, привлекают насекомых для опыления.

Факторы, влияющие на накопление.

Климат. Южные растения накапливают ЭМ в больших количествах.

Освещенность. Растения, произрастающие на открытых местах, накапливают больше ЭМ.

Почва. На рыхлых и удобренных почвах количество ЭМ повышается.

Возраст растения. Молодые растения содержат больше ЭМ.

Фаза развития. В процессе жизнедеятельности растения изменяется не только количество, но состав ЭМ.

Время суток. Большинство растений содержат больше ЭМ в утренние и вечерние часы.

Могут оказывать влияние влажность, высота над уровнем моря.

Методы получения. В зависимости от количества ЭМ применяются различные методы их получения:

1. Перегонка с водяным паром. Самый старый и до сих пор самый широко применяемый способ.

2. Прессование. Для сырья, содержащего большое количество ЭМ (плоды цитрусовых).

3. Поглощение. Метод основан на свойстве жиров поглощать ЭМ.

4. Экстракция. Проводится различными веществами, в которых ЭМ растворяются.

5. Мацерация. Настаивание сырья в жирном масле.

Классификация. В виду того, что ЭМ многокомпонентные смеси, классификация их условная. За основу принимаются главные ценные компоненты ЭМ, определяющие его запах и биологическую активность.

Физико-химические свойства. ЭМ чаще бесцветные или желтоватые прозрачные жидкости, хотя встречаются и окрашенные (коричное темно-коричневое, тимиановое красного цвета). Запах ароматный, специфический. Вкус пряный, острый, жгучий. Большая часть имеет плотность меньше 1, некоторые – больше 1 (тяжелее воды). В воде ЭМ нерастворимы или плохо растворимы , но при взбалтывании с водой она приобретает запах и вкус ЭМ. Почти все ЭМ хорошо растворимы в спирте, смешиваются во всех отношениях с жирами и жирными маслами, хорошо растворимы в хлороформе, эфире. Большинство оптически активны. Под действием кислорода воздуха, солнечного света некоторые компоненты ЭМ могут окисляться, при повышении температуры, повышении влажности изменяется состав ЭМ, что изменяет запах, вкус, растворимость, цвет, консистенцию ЭМ.

Сбор сырья. В период максимального накопления ЭМ в утренние часы.

Сушка сырья. Медленная сушка толстым слоем естественными способами или в сушилках при температуре 30-35 (до 40) о.

Хранение сырья. Нерасфасованное лекарственное растительное сырье, содержащее эфирные масла, хранится изолированно в хорошо укупоренной таре. Чистые масла хранят в небольших склянках темного стекла, заполненных доверху.

Фармакологическое действие. Оказывают противовоспалительное, бактерицидное, отхаркивающее, седативное действия, стимулируют секрецию пищеварительных желез. Наружно применяются как раздражающие и болеутоляющие средства.

Гликозиды – широко распространенная группа природных соединений, распадающаяся под влиянием различных агентов (кислота, щелочь, ферменты) на углеводную часть (гликон) и агликон.

Разнообразие гликозидов зависит как от характера сахарной части, так и от природы агликона. Углеводными компонентами могут быть моносахариды, дисахариды и олигосахариды.

Соединение гликона и агликона происходит за счет полуацетального гидроксила циклической формы сахара и водорода других функциональных групп. В зависимости от связывающего атома различают несколько типов гликозидов:

О-гликозиды – присоединение идет через атом кислорода. Это наиболее многочисленная группа. Легко гидролизуются.

S-гликозиды (тиогликозиды) – присоединение идет через атом серы. Очень устойчивы к кислотному гидролизу, но легко подвергаются ферментному и щелочному гидролизу.

N-гликозиды – присоединение идет через атом азота. Вырабатываются плесенями и грибами.

С-гликозиды – присоединение идет через атомы углерода. Отличаются большой устойчивостью к гидролизу. Содержатся в растениях семейств розовых, бобовых, капустных.

Классификация гликозидов . Наиболее многочисленная группа О-гликозидов классифицируют по характеру агликона:

1 .Терпеновые гликозиды –

· Монотерпеновые (горечи) - агликонами являются окисленные циклические формы монотерпенов.

· Тритерпеновые гликозиды – агликоны представлены пентациклическими или тетрациклическими тритерпеноидами. К этой группе относят тритерпеновые сапонины

2. Стероидные гликозиды – агликон циклопентанпергидрофенантрен:

· сердечные гликозиды

· стероидные сапонины

· гликоалкалоиды.

3 . Фенольные гликозиды – к этой группе относят:

· кумарины

· флавоноиды

· антрагликозиды

· дубильные вещества гидролизуемой группы.

4 . Алкигликозиды – агликонами являются алифатические углеводороды и их производные, например, элеутерозид из элеутерококка колючего.

5 .Цианогенные гликозиды – агликон содержит цианогенную группу. Например, амигдалин в семенах плодов черемухи.

Физико-химические свойства гликозидов. Гликозиды в чистом виде чаще кристаллические вещества, бесцветные или окрашенные, горького вкуса, легко растворимы в воде и спирте, плохо или не растворимы в неполярных органических растворителях. Обладают оптической активностью. Агликоны гликозидов в воде плохо или нерастворимы, но хорошо растворимы в органических растворителях. Гликозиды осаждаются раствором танина. Под воздействием ферментов, кислот, а некоторые даже при кипячении в воде гидролизуются. При наличии 2-х и более углеводных остатков гидролиз протекает ступенчато. Гликозиды свойственные живым растениям называются первичными или нативными. В результате частичного гидролиза образуются вторичные гликозиды.

Сбор сырья. Заготовку проводят в период максимального накопления с соблюдением всех правил заготовки лекарственного сырья.

Сушка сырья. Необходима быстрая искусственная сушка при температуре 50-60 градусов, т.к. при этой температуре происходит быстрое обезвоживание сырья, а наличие воды необходимо для протекания гидролиза, и происходит инактивация ферментов, вызывающих гидролиз.

Хранение сырья. Соблюдают все условия при хранении сырья, т.к. при повышенной влажности сырье быстро отсыревает и ф

Биологически активные органические соединения

К биологически активным веществам относятся: ферменты, витамины, гормоны и лекарства. Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Без ферментов нет жизни. В основе многих заболеваний человека лежат нарушения ферментативных процессов. Витамины могут быть отнесены к группе биологически активных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т. д. Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме, вызывая определенный биологический эффект. Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция. Термином» гормоны» следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях – железах внутренней секреции.

Витамины

Общая характеристика

Витамины (от лат. YITA – жизнь) – группа органических соединений разнообразной химической природы, необходимых для питания человека и животных и имеющих огромное значение для нормального обмена веществ и жизнедеятельности организма Витамины выполняют в организме те или иные каталитические функции и требуются в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и минеральными солями.)

История открытия витаминов

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Однако практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям.

Настоящим бичом для мореплавателей долгое время была цинга.Практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище. Основоположником учения о витаминах, является русский учёный Николай Иванович Лунин, который ещё в 1880 году провёл весьма показательные опыты, изучая пищевые потребности животного организма.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа. В 1911 году он выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов).По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу.Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita – жизнь). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы.

Классификация витаминов

Витамины делят на две большие группы: витамины растворимые в жирах, и витамины, растворимые в воде. Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами «латинского алфавита».

  1. ВИТАМИНЫ, РАСВОРИМЫЕ В ЖИРАХ.
  • Витамин A (антиксерофталический).
  • Витамин D (антирахитический).
  • Витамин E (витамин размножения).
  • Витамин K (антигеморрагический)
  1. ВИТАМИНЫ,РАСВОРИМЫЕ В ВОДЕ.
  • Витамин В1 (антиневритный).
  • Витамин В2 (рибофлавин).
  • Витамин PP (антипеллагрический).
  • Витамин В6 (антидермитный).
  • Пантотен (антидерматитный фактор).
  • Биотит (витамин Н, фактор роста для грибков, дрожжей и бактерий, антисеборейный).
  • Инозит. Парааминобензойная кислота (фактор роста бактерий и фактор пигментации).
  • Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).
  • Витамин В12 (антианемический витамин).
  • Витамин В15 (пангамовая кислота).
  • Витамин С (антискорбутный).
  • Витамин Р (витамин проницаемости).

Ферменты

Общая характеристика

Ферме́нты или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον - закваска) - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу). Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают). Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

История открытия

Термин «фермент» (fermentum по-латыни означает «бродило», «закваска») был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения. Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц.
Значительно позже (1836 г.) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto – «варю») под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов. Важным событием в развитии науки о ферментах явились работы К.С. Кирхгоффа. В 1814 г. действительный член Петербургской Академии наук К.С. Кирхгофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды – глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.) В разных изданиях применяются два понятия: «ферменты» и «энзимы». Эти названия идентичны. Они обозначают одно и тоже – биологические катализаторы.
Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки. В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода.
Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины «фермент» и «энзим» стали применять как равнозначные.

Свойства ферментов

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

  • Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом. Температурный оптимум для различных ферментов неодинаков. В общем, для ферментов животного происхождения он лежит между 40 и 50 °С, а растительного – между 50 и 60 °С.
  • Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента. Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.

Гипотеза Кошланда об индуцированном соответствии

  • Специфичность – одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества – пространственные изомеры расщепляются по эфирной связи двумя совершенно разными ферментами. Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения.По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. В 1958 г. Дениел Кошланд предложил модификацию модели «ключ-замок» . Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния. Эта модель получила название «рука-перчатка».

Классификация ферментов

По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции не гидролитического распада.

Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы.

  1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В) С+D.
  2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В) С.
  3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А) В.

По типу биохимических процессов все ферменты делят на 6 классов.

  1. Оксидоредуктазы – ускоряют реакции окисления – восстановления.
  2. Трансферазы – ускоряют реакции переноса функциональных групп и молекулярных остатков.
  3. Гидролазы – ускоряют реакции гидролитического распада.
  4. Лиазы – ускоряют не гидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).
  5. Изомеразы – ускоряют пространственные или структурные перестройки в пределах одной молекулы.
  6. Лигазы – ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Эти классы и положены в основу новой научной классификации ферментов.

Группа Ферменты

Гормоны

Серотонин

Общая характеристика

Гормоны- специфические вещества, которые вырабатываются в организме и регулируют его развитие и функцианирование. В переводе с греческого – гормоны- означают двигаю, возбуждаю. Гормоны образуются специальными органами – железами внутренней секреции (или эндокринными железами). Гормоны, в широком смысле слова, являются биологически активными веществами и носителями специфической информации, с помощью которой осуществляется связь между различными клетками и тканями, что необходимо для регуляции многочисленных функций организма. Информация, содержащаяся в гормонах, достигает своего адресата благодаря наличию рецепторов, которые переводят ее в пострецепторное действие (влияние), сопровождающееся определенным биологическим эффектом.

В настоящее время различают следующие варианты действия гормонов:

  1. гормональное, или гемокринное, т.е. действие на значительном удалении от места образования;
  2. изокринное, или местное, когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;
  3. нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;
  4. паракринное - разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;
  5. юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;
  6. аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;
  7. солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Cвойства гормонов

Особый интерес представляет способность организма сохранять гормоны в инактивированном (недеятельном) состоянии.

Гормоны, являясь специфическими продуктами желез внутренней секреции, не остаются стабильными, а изменяются структурно и функционально в процессе обмена веществ. Продукты превращения гормонов, могут обладать новыми биокаталитическими свойствами и играть определенную роль в процессе жизнидеятельности.

Работа гормонов осуществляется под контролем и в теснейшей зависимости с нервной системой.

Специфичность физиологического действия гормонов является относительной и зависит от состояния организма как целого. Большое значение имеет изменение состава среды, в которой действует гормон, в частности, увеличение или уменьшение концентрации водородных ионов, сульфгидрильных групп, солей калия и кальция, содержание аминокислот и прочих продуктов обмена веществ, влияющих на реактивность нервных окончаний и взаимоотношения гормонов с ферментными системами.

Доказано, что гормоны находятся в тесной зависимости от условий внешней среды, влияние которой опосредуется рецепторами нервной системы. Раздражение болевых, температурных, зрительных и др. рецепторов оказывает влияние на выделение гормона гипофиза, щитовидной железы, надпочечника и др. желез.

Некоторые химические вещества, вводимые в организм, могут специфически нарушать гормонообразование.

Классификация гормонов

По химической природе гормоны делятся на белковые, стероидные (или липидные) и производные аминокислот.

Белковые гормоны подразделяют на пептидные: АКТГ, соматотропный (СТГ), меланоцитостимулирующий (МСГ), пролактин, паратгормон, кальцитонин, инсулин, глюкагон, и протеидные – глюкопротеиды: тиротропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), тироглобулин. Гипофизотропные гормоны и гормоны желудочно-кишечного тракта принадлежат к олигопептидам, или малым пептидам.

К стероидным (липидным) гормонам относятся кортикостерон, кортизол, альдостерон, прогестерон, эстрадиол, эстриол, тестостерон, которые секретируются корой надпочечника и половыми железами. К этой группе можно отнести и стеролы витамина D – кальцитриол. Производные арахидоновой кислоты являются, как уже указывалось, простагландинами и относятся к группе эйкозаноидов.

Адреналин и норадреналин, синтезируемые в мозговом слое надпочечника и других хромаффинных клетках, а также тироидные гормоны являются производными аминокислоты тирозина.

Белковые гормоны гидрофильны и могут переноситься кровью как в свободном, так и в частично связанном с белками крови состоянии. Стероидные и тироидные гормоны липофильны (гидрофобны), отличаются небольшой растворимостью, основное их количество циркулирует в крови в связанном с белками состоянии.

Гормоны осуществляют свое биологическое действие, комплексируясь с рецепторами – информационными молекулами, трансформирующими гормональный сигнал в гормональное действие. Большинство гормонов взаимодействуют с рецепторами, расположенными на плазматических мембранах клеток, а другие гормоны – с рецепторами, локализованными внутриклеточно, т.е. с цитоплазматическими и ядерными эффектом.

Группа Гормоны

Лекарственные средства

Общая характеристика

Лекарственные средства - фармакологические средства (вещества или смеси веществ), прошедшие клинические испытания и разрешенные к применению для профилактики, диагностики и лечения заболеваний уполномоченным на то органом страны в установленном порядке, полученные из крови, плазмы крови, а также органов, тканей человека или животных, растений, минералов, методом синтеза или с применением биотехнологий.

Таким образом, к лекарственным средствам относятся вещества растительного, животного или синтетического происхождения, обладающие фармакологической активностью и предназначенные для производства и изготовления лекарственных форм.

История открытия

Лекарства как химические вещества, способные купировать всевозможные патологические состояния организма, приобретают все большее значение в жизни общества. Сейчас известно уже более 12 тысяч таких препаратов.

Уже в глубокой древности люди пытались спасти свою жизнь, используя различные природные лекарственные вещества. Чаще всего это были растительные экстракты, но применялись и препараты, которые получали из сырого мяса, дрожжей и отходов животных. Первые ученые инстинктивно чувствовали, что во многих живых организмах находятся вещества, которые могут помочь в борьбе с болезнями, но лишь по мере развития химии люди убедились, что лечебный эффект таких веществ заключается в избирательном воздействии на организм определенных химических соединений. Прошло еще какое-то время, и такие соединения стали получать в лабораториях путем синтеза.

I . Введение.

К биологически активным веществам относятся: ферменты, витамины и гормоны . Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций. Впрочем, и любое функциональное проявление живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и т.д. - тоже непосредственно связаны с действием соответствующих ферментных систем. Иными словами, без ферментов нет жизни. Их значение для человеческого организма не ограничивается рамками нормальной физиологии. В основе многих заболеваний человека лежат нарушения ферментативных процессов.

Витамины могут быть отнесены к группе биологически активных соединений , оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т.д.

Гормоны - это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Нередко гормонами называют и некоторые другие продукты обмена веществ, образующиеся во всех [напр. углекислота] или лишь в некоторых [напр. ацетилхолин] тканях, обладающие в большей или меньшей степени физиологической активностью и принимающие участие в регуляции функций организма животных Однако такое широкое толкование понятия " гормоны" лишает его всякой качественной специфичности. Термином " гормоны" следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях - железах внутренней секреции. Биологически активные вещества, образующиеся в других органах и тканях, принято называть " парагормонами","гистогормонами","биогенными стимуляторами".

Биологически активные продукты обмена веществ образуются и в растениях, но относить эти вещества к гормонам совершенно не правильно.

А теперь познакомимся с каждой группой веществ, входящей в состав биологически активных, отдельно.

II . Ферменты.

1.История открытия.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях. Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном [изолированном от воздуха] виде, так и на воздухе в присутствии кислорода. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов - ферментов . Термин "фермент" (fermentum по-латыни означает "бродило", "закваска") был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент, принимающий активное участие в процессе спиртового брожения.

Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц. Он давал хищным птицам глотать кусочки мяса, заключенные в просверленную металлическую трубочку, которая была прикреплена к тонкой цепочке. Через несколько часов трубочку вытягивали из желудка птицы и выяснилось, что мясо частично растворилось. Поскольку оно находилось в трубочке и не могло подвергаться механическому измельчению, естественно было предположить, что на него воздействовал желудочный сок. Это предположение подтвердил итальянский естествоиспытатель Л. Спалланцани. В металлическую трубочку, которую заглатывали хищные птицы, Л.Спалланцани помещал кусочек губки. После извлечения трубки из губки выжимали желудочный сок. Затем нагревали мясо в этом соке, и оно полностью в нем " растворялось".

Значительно позже (1836г) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto - "варю") под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов.

Важным событием в развитии науки о ферментах явились работы К.С. Киргоффа. В 1814 г. действительный член Петербургской Академии наук К.С.Киргофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии. Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.)

В разных изданиях применяются два понятия: "ферменты" и " энзимы". Эти названия идентичны. Они обозначают одно и тоже - биологические катализаторы . Первое слово переводится как "закваска" , второе - "в дрожжах".

Долгое время не представляли,что происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи - это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества. Иными словами, каждая дрожжевая клетка "начинена" ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно "обитающие" вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов. В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они "организованы". А "неорганизованные" катализаторы, которые могут работать вне клетки, называли энзимами. Такое противопоставление "живых" ферментов и "неживых" энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента. Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар. Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па. Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

C6H12O6--->2C2H5OH + 2CO2

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины "фермент" и "энзим" стали применять как равнозначные.

2.Свойства ферментов.

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Эти качества отличают ферменты от катализаторов обычного типа. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом . Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

Министерство образования и науки РФ

ФГБОУ ВПО «Бурятский государственный университет»

Медицинский факультет

Кафедра фармации

КУРСОВАЯ РАБОТА

"Основные группы биологически активных веществ лекарственных растений"

Выполнила:

Варкина Л.С.гр.14290з

План работы

Введение

1.Полисахариды

Витамины

Органические кислоты

Фенольные соединения

Эфирные масла

Сапонины

Сердечные гликозиды

9. Алкалоиды

Используемая литература

Введение

Биологически активные вещества (БАВ) - химические вещества, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определённым группам живых организмов (в первую очередь - по отношению к человеку, а также по отношению к растениям, животным, грибам и пр.) или к отдельным группам их клеток. Физиологическая активность веществ может рассматриваться как с точки зрения возможности их медицинского применения, так и с точки зрения поддержания нормальной жизнедеятельности человеческого организма либо придания группе организмов особых свойств (таких, например, как повышенная устойчивость культурных растений к болезням).

Биологически активные вещества (БАВ) растений обладают выраженной фармакологической активностью (их еще называют действующими веществами).

К БАВ относятся:

Вещества первичного синтеза: витамины, липиды, углеводы.

Вещества вторичного синтеза: эфирные масла, горечи, сердечные гликозиды, сапонины, алкалоиды, кумарины, хромоны, лигнаны, флавоноиды, дубильные вещества и т.д.).

Вещества, кажущиеся неактивными, условно делят на сопутствующие и балластные. Сопутствующие вещества могут быть полезными и вредными (нежелательными).

Полезные сопутствующие вещества (витамины, органические кислоты, минеральные вещества, сахара и др.) оказывают благоприятное воздействие на организм. Некоторые из них могут влиять на эффективность проявления фармакотерапевтического действия БАВ растворимые или набухающие полисахариды, дубильные вещества способствуют пролонгированию лечебного эффекта БАВ.

Примерами нежелательных сопутствующих веществ могут служить: производные антранола в свежесобранной коре крушины, обладающие выраженным рвотным действием; смолистые вещества в листьях сенны.

Кажущиеся неактивными вещества, во-первых, выполняют биофармацевтическую функцию вспомогательных веществ в лекарственных формах - влияют на кинетику действующих веществ. И, во-вторых, оказывают неспецифическое благоприятное воздействие на организм больного, повышая его защитные силы и улучшая обмен веществ, что способствует лечению основного заболевания. Одна и та же группа веществ в разных растениях может играть роль или БАВ, или сопутствующих веществ.

В лекарственных растениях содержится, как правило, не одна, а несколько групп БАВ. Поэтому так часто используют экстракционные препараты из лекарственного растительного сырья - настои, отвары, настойки, экстракты. При этом БАВ растений совместно участвуют в фармакологическом эффекте.

Флавоноиды сушеницы способствуют расширению кровеносных сосудов вблизи поврежденного места, при этом улучшается кровоснабжение (орошение кровью). Кроме того, флавоноиды снимают спазмы гладкой мускулатуры, оказывают антимикробное, противовоспалительное действие. Каротиноиды способствуют эпитализации поврежденной поверхности. Все это способствует быстрому заживлению поврежденных тканей.

Используя различные технологические приемы, добиваются более полного извлечения из растительного сырья отдельных групп БАВ для направленного фармакологического действия. При использовании лекарственного растительного сырья для производства препаратов необходимо учитывать наличие всех групп БАВ. Используя технологию последовательного извлечения, из некоторых видов сырья получают препараты на основе разных групп БАВ с разным фармакологическим действием. Такая технология является одним из способов рационального, более полного использования лекарственного растительного сырья.

Таким образом, современные фитохимические исследования и создание новых фитопрепаратов подтверждают условность классификации веществ лекарственных растений. Вещества, ранее считавшиеся сопутствующими или балластными, в новых препаратах являются действующими.

1. Полисахариды

Полисахариды (полиозы) - природные полимерные высокомолекулярные углеводы, в состав которых входят различные моносахариды (монозы) или олигосахариды, соединенные гликозидными связями и образуют линейные или разветвленные цепи. Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Они являются одним из основных источников энергии, образующейся в результате обмена веществ организма. Они принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Классификация полисахаридов:

Полисахариды делят на два типа: гомополисахариды (гомополимеры) и гетерополисахариды (гетерополимеры), в зависимости от характера входящих в их состав моносахаридов и их производных.

Гомополисахариды построены из моносахаридных единиц (мономеров) одного типа (например) крахмал, клетчатка, из животных полисахаридов - гликоген, хитин), а гетерополисахариды - из остатков различных моносахаридов и их производных (например, гемицеллюлозы, инулин, пектиновые вещества, слизи и камеди).

Также полисахариды можно классифицировать:

По кислотности: нейтральные, кислые;

По характеру скелета: линейные, разветвленные;

По происхождению: фитополисахариды (крахмал, инулин, камеди, слизи, пектиновые вещества, клетчатка), зоополисахариды (гликоген, хитин); полисахариды микроорганизмов.

В зависимости от функций полисахариды делятся на:

Øкаркасные (конструктивные) - клетчатка, хитин;

Øэнергетические (резервные, запасные) - крахмал, гликоген, инулин, слизи, альгиновые кислоты;

Øзащитные - слизи, камеди.

В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз - D-глюкоза, D-галактоза, L-фруктоза, D-манноза; из пентоз - D-ксилоза, L-арабиноза и др., из дезоксисахаров - L-рамноза, D-фукоза; из продуктов восстановления D-маннозы - спирт маннит; из продуктов окисления моносахаридов - D-глюкуроновая, D-маннуроновая, D-галактуроновая, D-гулуроновая и другие кислоты.

D-манноза b-D-глюкопираноза

α-D-галактозаα-L-рамноза

α-D-глюкуроновая кислотаβ-D-фукоза

α-D-галактоуроновая кислотыα-L-олеандроза β-D -апиозаβ-D-фруктофураноза

ØСтруктурные полисахариды придают клеточным стенкам прочность.

ØВодорастворимые полисахариды не дают клеткам высохнуть.

ØРезервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом.

Физические и химические свойства.

Физические свойства. Аморфные, реже кристаллические вещества от серовато-желтоватого до буроватого цвета, практически без запаха, вкус - с ощущением слизистости, иногда - сладковатый. Полисахариды нерастворимы в спирте и неполярных органических растворителях, растворимость в воде варьирует: некоторые линейные гомополисахариды (ксиланы. целлюлоза, маннаны) в воде не растворяются из-за прочных межмолекулярных связей; сложные и разветвленные полисахариды либо растворяются в воде (гликоген, декстраны), либо образуют гели (пектины, агар-агар, альгиновые кислоты). Различная растворимость в воде и спирте используется в качественном и количественном анализе.

Химические свойства. Полисахариды подвергаются кислотном или ферментативному гидролизу с образованием моно- или олигосахаридов. Полисахариды не обладают восстанавливающими свойствами. В природе 80% органических веществ составляют полисахариды. Они играют различную биологическую роль для растений и животных.

Обнаружение полисахаридов в лекарственном растительном сырье.. Осаждение полисахаридов этанолом. Обнаружение полисахаридов в лекарственном растительном сырье проводят путем осаждения их этанолом. Для этого к концентрированным водным извлечениям прибавляют трехкратный объем 96% этилового спирта, что приводит к выпадению рыхлых осадков. Полученные осадки отделяют, промывают спиртом и высушивают. Водные растворы осадков используют для проведения реакций с реактивом Фелинга и раствором меди сульфата. Положительные реакции свидетельствуют о наличии в сырье полисахаридов.. Хроматографический анализ. Метод хроматографии широко используется для анализа моносахаридного состава полисахаридов и включает в себя несколько стадий:

Экстракция полисахаридов из сырья соответствующими экстрагентами при комнатной температуре или при нагревании:

водой (для водорастворимых полисахаридов),

водными растворами органических или минеральных кислот (смесь 0,5 % растворов щавелевой кислоты и оксалата аммония 1:1 - для пектиновых веществ),

водными растворами КОН, NaOH (7-15% - для гемицеллюлоз).

Выделение полисахаридов проводится путем осаждения полисахаридов из концентрированных извлечений этиловым спиртом.

Гидролиз полисахаридов.

Для расщепления полисахаридов до моносахаридов используют гидролиз серной кислотой (1 моль/л) при 100°С в течение 6 часов (для водорастворимых полисахаридов) и 24 часов (для пектиновых веществ).

Анализ гидролизатов.

Определение количественного содержания полисахаридов в лекарственном растительном сырье включает следующие этапы:

Экстракция полисахаридов их сырья;

Используются следующие методы:

Гравиметрический. Этот метод основан на извлечении полисахаридов из сырья, их осаждении и последующем определении массы полуденного осадка.

Спектрофотометрический метод. Основан на измерении оптической плотности продуктов взаимодействия моносахаридов, образовавшихся после гидролиза полисахаридов, с пикриновой кислотой в щелочной среде.

Титрометрический метод. Такой способ качественной и количественной оценки выделенной из растений полисахаридной фракции предложен по реакции образования комплекса полисахаридов с йодом (обратное йодиметрическое титрование) и опробован для водорастворимых полисахаридов подорожника и мать-и-мачехи. Потенциометрическое титрование используется для определения пектиновых веществ.

Иммуноферментный анализ по реакции антиген-антитело. Метод позволяет не только оценить количество субстанции, но и ее иммунную активность, т.е. биологическое действие. Такой метод разработан для определения иммуноактивных полисахаридной и гликопротеиновой фракции в экстрактах эхинацеи пурпурной.

Сырьевая база:

Алтей армянский произрастает в лесостепной и степной зонах европейской части России. Алтей лекарственный - в лесной и лесостепной зонах европейской части России и Западной Сибири, на лугах, в поймах и долинах рек среди зарослей кустарников, по берегам озер. Липа сердцевидная произрастает в лесной и лесостепной зонах европейской части России, в широколиственных и смешанных лесах. На ДВ произрастают викарианты липы сердцевидной или широколистной. Мать-и-мачеха произрастает в лесной, лесостепной и степной зонах европейской части России и Западной Сибири, по берегам рек и ручьев, в сыроватых оврагах, предпочитает глинистые почвы. На Дальнем Востоке - встречается как заносное. Подорожник большой - евразиатский вид, распространен по всей территории России как рудеральный (придорожный) сорняк. Подорожник болотный на территории России не произрастает и не культивируется. Ламинария японская встречается у южных берегов Японского и Охотского морей, в Тихом океане вдоль южных Курильских островов и Сахалина. Ламинария сахаристая распространена вдоль берегов Белого, Баренцева и Карского морей. Лен посевной, а также растения - источники получения крахмала - широко культивируются в России. Таким образом, потребности в сырье липы, мать-и-мачехи, подорожника большого, ламинарии обеспечиваются за счет дикорастущих растений; алтея - от дикорастущих и культивируемых растений; льна - за счет культивируемых растений. Сырье подорожника болотного импортируется.

Жиры

Жиры - природные соединения, находящиеся в тканях животных, растений, в семенах и плодах различных растений, в некоторых микроорганизмах. Как правило, это смеси, состоящие из полных эфиров глицерина и жирных кислот и имеющие состав где R, R" и R - углеводородные остатки (радикалы) жирных кислот, содержащие от 4 до 26 атомов углерода.

Классификация жиров:. По происхождению:

Животные жиры:

плотные: твердые и мягкие (например, свинной жир);

жидкие жиры (например, тресковый жир (рыбий жир)).

Растительные жиры:

твердые: масло Какао, пальмовое масло, лавровое масло, кокосовое масло;

жидкие: растительные масла (например, оливковое масло).. По высыхаемости:

Невысыхающие: оливковое масло, персиковое масло, арахисовое масло, миндальное масло, касторовое масло.

Полувысыхающие: подсолнечное масло, кукурузное масло, кунжутное масло, соевое масло, хлопковое масло.

Высыхающие: маковое масло, соевое масло, коноплевое масло, ореховое масло.

Строение жиров.

Жиры состоят почти исключительно из триглицеридов жирных кислот, то есть это сложные эфиры глицерина и высокомолекулярных жирных кислот. Входящие в состав триглицеридов жирные кислоты могут быть насыщенными и ненасыщенными. Жиры некоторых растений содержат специфические жирные кислоты, характерные только для данных растений. Большинство известных жиров представляют смеси собой разнокислотных глицеридов.

Встречающиеся в природе жирные кислоты можно разделить на три группы:

Насыщенные; 2. мононенасыщенные; 3. полиненасыщенные.

Не насыщенность жирных кислот обусловлена наличием двойных связей. В большинстве растительных масел двойная связь находится между С-9 и С-10 атомами углеродной цепи. Если двойных связей больше одной (число двойных связей может быть от 1 до 9), они обычно располагаются через три углеродных атома. Кроме триглициридов в состав жиров входят стерины, пигменты (хлорофилл, каротиноиды), жирорастворимые витамины (группы А, Е, D, K, F), свободные жирные кислоты, слизи.

Физические свойства.

Жиры и жирные масла характеризуются общими физическими свойствами: они жирны на ощупь; нанесенные на бумагу, дают характерное пятно, не исчезающее, а, наоборот, расплывающееся при нагревании.

Природные жиры и жирные масла окрашены в желтоватый, реже в зеленоватый цвет благодаря присутствию хлорофилла, еще реже - в красно-оранжевый или иной цвет, зависящий от наличия тех или иных красящих веществ. Свежие жиры и жирные масла имеют специфические, обычно приятные, запах и вкус, обусловленные примесью различных летучих веществ. Консистенция, цвет, вкус и запах растительных жиров зависят от вида растения, из которого они получены, от климата и условий добывания масла. От наземных животных получают плотные или мягкие жиры, содержащие предельные кислоты, а от морских животных и рыб - жидкие, непредельные. Все жиры легче воды. В воде они совершенно нерастворимы, в спирте малорастворимы (за исключением касторового масла), несколько больше растворимы в кипящем спирте и во всех соотношениях растворимы в эфире, хлороформе и сероуглероде. Жиры и жирные масла не летучи и не перегоняются без разложения. При сильном нагревании жиры начинают разлагаться и выделять раздражающий глаз альдегид акролеин, представляющий продукт разложения глицерина и обладающий весьма неприятным острым запахом. Жиры и жирные масла при обыкновенной температуре не загораются, но при сильном нагревании могут гореть ярким пламенем.

Химические свойства.

Омыление. Омылением жиров называется расщепление их на свободные жирные кислоты и глицерин. В природе расщепление жиров происходит под влиянием фермента липазы, содержащегося во всех жирномасличных семенах; реакция протекает в присутствии влаги. Омыление происходит также при наличии катализаторов. Для омыления пользуются растворами щелочей и окисями металлов; при этом получаются соли жирных кислот и глицерин.

Прогоркание. При длительном хранении жиров происходит сложный химический процесс, называющийся прогорканием. Реакция протекает на свету при доступе воздуха и влаги и, вероятно, не без участия соответствующих микроорганизмов; жиры и масла частью окисляются (присоединяя кислород воздуха), частью же подвергаются процессу омыления, распадаясь на глицерин и свободные кислоты. При этом появляются неприятный запах, раздражающий горьковатый вкус и кислая реакция.

Высыхание жиров - сложный физико-химический процесс, при котором под влиянием кислорода воздуха происходит их окисление, а затем конденсация и полимеризация. Этот процесс связан с наличием в маслах линолевой и линоленовой кислот. Масла, в которых преобладает линолевая кислота, дают мягкие пленки и называются полувысыхающими; масла, состоящие преимущественно из глицеридов линоленовой и изолинолевой кислот, образуют твердые пленки и называются высыхающими.

Гидрогенизация жиров - присоединение водорода по месту двойных связей. Жиры, содержащие жирные кислоты непредельного ряда, могут присоединять по месту двойной связи два атома водорода, переходя в соответствующие предельные кислоты.

Анализ жиров.

Для определения подлинности и качества жира разработана методика определения физических и химических показателей, «чисел или констант», характерных для каждого жира. К физическим показателям относятся: преломляющая способность масел (рефракция), удельный вес (наиболее характерный для жидких масел) и температура плавления (для твердых жиров).

Химические показатели - это кислотное число, число омыления и йодное число. Кислотным числом называют количество миллиграммов едкого кали, необходимое для нейтрализации свободных жирных кислот в 1 г жира. Таким образом, оно свидетельствует о наличии свободных кислот. При хранении кислотное число повышается в связи с происходящим гидролитическим расщеплением жира. Следовательно, кислотное число является показателем свежести жира.

Сырьевая база:

Родиной растений являются: Северная Америка - для подсолнечника, Центральная Америка (Мексика) - для кукурузы и шоколадного дерева, Южная Америка (Бразилия) - для арахиса, Тропическая Африка (Эфиопия) - для клещевины, Страны Средиземноморья (Сирия, Южная Анатолия) - для маслины, горы Кавказа и Средней Азии - для абрикоса и миндаля, жиромасличные растения культивируют в России и странах ближнего зарубежья. В центрально-черноземных областях культивируют кукурузу и подсолнечник. Севернее - в Нечерноземных областях России культивируют лен посевной - это Калининградская, Псковская, Вологодская области, Поволжье, Западная Сибирь и Прибалтика.

Не культивируют в России и ближнем Зарубежье шоколадное дерево, масличную пальму и кокосовую пальму. Это сырье только импортное.

Витамины

Витамины - это БАВ, необходимые для процессов усвоения организмом всех пищевых веществ, роста и восстановления клеток, тканей, других жизненно важных процессов. Их медицинское применение не ограничивается только ситуациями, связанными с соответствующим дефицитом. Витамины способны оказывать выраженное регулирующее влияние на функциональное состояние разных органов и систем человека в норме и при патологии, повышая резистентность организма, активируя иммунологические и обменные процессы.

Существуют несколько классификаций витаминов: по растворимости, по действию на организм (фармакологическая), буквенная (обозначаемая буквами и цифрами латинского алфавита), химическая (по их принадлежности к группам химических соединений, в частности, к ациклическому (алифатическому) ряду, к алициклическому ряду, ароматическому ряду и к гетероциклическому ряду).

Классификация витаминов и витаминосодержащего лекарственного растительного сырья:

Существует несколько классификаций витаминов.

Буквенная классификация - первая в историческом плане. При обнаружении новых факторов витаминной природы им присваивали условные названия в виде буквы латинского алфавита. Например: витамины A, B, C, D и др.

Фармакологическая классификация. Эта классификация вводилась параллельно с буквенной и указывала на заболевание, от которого предохраняет витамин:

·витамин С - противоцинготный;

·витамин К - антигеморрагический;

·витамин D - антирахитический и др.

Химическая классификация. В зависимости от химической структуры выделены группы:

·витамины алифатического ряда - С, F и др.;

·витамины алициклического ряда - A, D и др.;

·витамины ароматического ряда - К и др.;

·витамины гетероциклического ряда - Е, Р и др.

Классификация по растворимости витаминов:

·водорастворимые витамины - группы В, С, Р, Н, РР;

·жирорастворимые витамины - A, D, Е, К, F, U.

Классификация витаминов по их растворимости исходит из их физико-химических свойств, в частности, на водо- и жирорастворимости витаминов, образующих 2 основные группы, в форме которых эти вещества и содержатся в лекарственном растительном сырье.

Во всех растениях содержатся витамины, но витаминосодержащими называют те растения, которые избирательно накапливают витамины в дозах, способных оказать выраженный фармакологический эффект. Это в 500-1000 больше, чем в других растениях. В настоящее время практически все витамины получают синтетическим путем. Однако витаминосодержащие лекарственные растения не утратили своего значения. Их используют в педиатрии, в гериатрии и для лечения лиц, склонных к аллергическим заболеваниям, т.к.

во-первых, витамины в лекарственном растительном сырье находятся в комплексе с полисахаридами, сапонинами, флавоноидами, поэтому такие витамины легче усваиваются;

во-вторых, растительные витамины реже дают аллергические реакции, чем их синтетические аналоги;

в-третьих, в организме человека есть специальные системы защиты от передозировки витаминов (например, каротин в организме человека превращается в витамин А по мере необходимости).

Физические свойства.

В чистом виде витамины - кристаллические вещества или жидкости белого, желтого, оранжевого или красного цвета, имеющие специфический вкус, без характерного запаха. В настоящее время установлено, что витамины - индивидуальные вещества различных химических классов.

Химические свойства.

Строение витаминов изучено сравнительно недавно. Оказалось, что витамин С относится к классу кислот, витамин А - к первичным спиртам, витамины группы D - производные высокомолекулярных спиртов стеринов. Если витамин С имеет углеводный характер строения, то витамин D относится к сложным стероидным или гормоноподобным соединениям. В растениях витамины встречаются иногда в виде провитаминов, например каротин - провитамин А, состоящий из двух молекул витамина А.

Методы анализа.

Согласно существующей нормативной документации подтверждают присутствие витаминов только в листьях крапивы. Определяют наличие витамина К1.

Метод определения хроматографический. Определение основано на способности витамина К1 флюоресцировать в УФ-свете. Экстрагируют из растительного сырья витамин К1 гексаном. Хроматографическое разделение проводят восходящим способом на пластинке «Силуфол» при температуре 40-70 0С. Система растворителей: бензол - петролейный эфир (1:1). Готовую хроматограмму выдерживают в УФ-свете при длине волны 360 нм (2 минуты). На пластинке- должно появиться пятно с желто-зеленой флюоресценцией.

Количественное определение витаминов проводят в плодах шиповника (витамин С) и облепихи (каротиноиды в пересчете на β-каротин).

Плоды шиповника - ГФ XI изд., стр.274 - витамина С должно быть не менее 0,2%.

Плоды облепихи свежие - ФС 42-1052-76.

Оценку качества витаминосодержащего сырья проводят и по другим группам биологически активных веществ: полисахаридов (трава череды), флавоноидов (трава сушеницы), дубильных веществ (кора калины), экстрактивных веществ (кора калины, цветки календулы, столбики с рыльцами кукурузы, трава пастушьей сумки). Для сырья крапивы, рябины, земляники, смородины - количественного определения биологически активных веществ не проводят.

Сырьевая база:

Концентраторы витамина С: плоды черной смородины, шиповника, рябины обыкновенной, малины, листья крапивы, земляники.

Концентраторы и источники витамина Р: плоды софоры японской, рябины черноплодной, черной смородины, кожура цитрусовых, листья чая.

Концентраторы каротиноидов (провитамина А): плоды шиповника, облепихи, рябины, цветки календулы, трава череды, сушеницы топяной.

Концентраторы витамина К: листья крапивы, подорожника, трава пастушьей сумки, тысячелистника, горца почечуйного, горца перечного, цветки и листья зайцегуба, кора калины, кукурузные рыльца.

Концентраторы витамина Е: плоды облепихи, облепиховое масло, масло шиповника, кукурузное масло, льняное масло, семена тыквы.

Концентраторы витамина F: масло кукурузное, масло подсолнечное.

Витамины встречаются в растениях практически всех семейств. Почти все растения способны биосинтезироваться растениями. При этом концентрации одних витаминов (группа В, кислоты фолиевая, пантотеновая) в большинстве растений невелики и примерно одинаковы, других (витамины К, кислота никотиновая, биотин, токоферолы) - существенно отличаются, но остаются небольшими. В высоких концентрациях способны накапливаться только кислота аскорбиновая (витамин С), каротиноиды (провитамин А) и некоторые флавоноиды (рутин, кверцетин), относимые к витамину Р. Витамины локализуются в зеленых частях растений, цветках, плодах (витамины С, Р, каротин) и в семенах (витамины Е и Р).

Водорастворимые витамины находятся в растворенном состоянии в клеточном соке, жирорастворимые витамины включены в пластиды и алейроновые зерна. Каротины находятся в хромопластах - пластидах плодов, цветков и других частей растений, они находятся в виде водорастворимых белковых комплексов или в капельках масла. Содержание витаминов в растениях зависит от генетических особенностей видов и от условий среды.

Органические кислоты

Органические кислоты - широко распространенная в растительном мире группа соединений. Органические кислоты обладают широким спектром биологического действия. Бензойная и салициловая кислоты (цветков ромашки, таволги, коры ивы, черной и красной смородины) обладают антисептическим свойством. Производные кофейной и других оксикоричных кислот, содержащиеся в листьях подорожника и мать-и-мачехи, побегах артишока и других растениях, оказывают желчегонное, противовоспалительной действие. Уроновые кислоты и их производные (пектины), содержащиеся в мякоти плодов и ягод (яблок, айвы, груш, абрикосов, крыжовника, малины, вишни, персика и др.), обладают детоксицирующими свойствами и способствуют выведению тяжелых металлов из организма человека, холестерина.

Органические кислоты оказывают благоприятное влияние на процесс пищеварения. Они снижают рН среды, способствуя созданию определенного состава микрофлоры, активно участвуют в энергетическом обмене веществ (цикл Кребса), стимулируют сокоотделение в желудочно-кишечном тракте, улучшают пищеварение, активизируют перистальтику кишечника, способствуя снижению риска развития многих желудочно-кишечных и других заболеваний, обеспечивая ежедневный стул нормальной структуры, тормозят развитие гнилостных процессов в толстом кишечнике.

Органические кислоты наряду с углеводами и белками являются наиболее распространенными соединениями в растениях и играют важную роль в биохимических процессах обмена веществ в растительных клетках. Они могут присутствовать в растениях в свободном состоянии или в виде солей, эфиров и других соединений. Органические кислоты определяют вкус растений, а летучие - их запах (муравьиная, уксусная, масляная, изовалериановая). Некоторые органические кислоты, например бензойная, обладают антисептическим действием и предохраняют плоды, в которых они находятся, от гниения при хранении (клюква, брусника), другие проявляют витаминное действие (широко встречающаяся в растительном сырье аскорбиновая кислота).

Наиболее распространены в растениях яблочная, лимонная, винная, щавелевая кислоты. Некоторые из них - источник получения органических кислот, сырье других используется самостоятельно или в лечебных сборах. Органические кислоты могут накапливаться в подземных органах растений, но больше их содержится в надземной части, особенно в плодах (клюква, малина, черная смородина, плоды цитрусовых и др.) Роль органических кислот в жизнедеятельности организма существенна. Они являются связующим звеном между обменом углеводов и аминокислот, поддерживают кислотно-щелочное равновесие в организме, некоторые предупреждают развитие атеросклероза или входят в состав клеточных гормонов - простагландинов.

Сырьевая база.

Низшие карбоновые кислоты (щавелевая, малоновая) содержатся в плодах и листьях спаржи, крапивы, чистотела, рябины, черники, а также в незрелых плодах крыжовника. Яблочная, винная, лимонная, оксикарбоновая кислоты содержатся в плодах барабариса (до 3%) земляники, малины, а так же в овощных культурах. Сорбиновая и парасорбиновая кислоты характерны для плодов рябины обыкновенной. Муравьиная кислота обнаружена в малине. Сложная смесь оксикоричных кислот характерна для боярышников, винограда амурского, рябины, смородины, лесных яблок. Для ягод семейства брусничных характерны фенолокислоты: п-оксибензойная, протокатеховая, о-пирокатеховая, галловая. Галловая кислота содержится также в листьях чая. Лимонной кислоты особенно много в цитрусовых и клюкве (до 3%). В малине имеется много производных салициловой кислоты, в меньших количествах они присутствуют в землянике, смородине, вишне и винограде, тысячелистнике, цветках ромашки, клюкве, рябине. В сливах и клюкве обнаружена хинная кислота.

Фенольные соединения

Фенольные соединения представляют собой один из наиболее распространенных и многочисленных классов природных соединений, обладающих биологической активностью, отличительная особенность которых состоит в наличии свободного или связанного фенольного гидроксила.

По химическому строению они весьма разнообразны, поэтому их трудно классифицировать.

К. Фрейнденберг делит фенольные вещества на две группы:

гидролизируемые; - конденсированные.

К первой группе он относит гидролизирующие дубильные вещества, у которых бензольные ядра соединены в комплекс посредством атомов кислорода в форме сложных эфиров или гликозидных связей. Вторую группу составляют конденсированные фенольные соединения, у которых молекулы соединены одна с другой углеродными связями.

В настоящее время фенольные соединения делят на три группы по их углеродному скелету.

К первой группе относятся простейшие фенольные соединения, имеющие общую формулу: С6-С1. К этим соединениям относятся фенольные кислоты: н-оксибензой-ная, протокатеховая, галловая, ванилиновая, салициловая, генти-зиновая и др., а также соответствующие альдегиды и спирты.

Во вторую группу входят фенольные соединения со структурой С6-С3, они состоят из одного ароматического ядра и трехуг-леродной боковой цепи, как показано ниже:

К ним относятся производные оксикоричной кислоты: п-окси-коричная, n-кумаровая, синаповая, кофейная, феруловая, а также соответствующие спирты.

К третьей группе относят фенольные соединения со структурой Сб-С3-С6, имеющие следующее строение:

Это фенольное соединение состоит из двух ароматических ядер (А и В), соединенных между собой трехуглеродным фрагментом. (С). Эти соединения называют флавоноидами.

Третья группа наиболее распространенная. В зависимости от окисленности или восстановленности трехуглеродного фрагмента (С) получаются различные подгруппы фенольных соединений: катехины, лейкоантоцианы, флавононы, флавононолы, антоцианы, флавоны, флавонолы. При обработке флавоноидов кислотами происходит конденсация и дальнейшее укрупнение молекул. Эти конденсированные соединения называют флобафенами.

Важнейшее химическое свойство фенолов - это способность к обратимому окислению, или восстановительному и антиоксидантному (противоокислительному) действию на другие соединения.

Качественный и количественный анализ сырья основан на физических и химических свойствах.

Качественный анализ.

Включает качественные реакции и хроматографические пробы.

Фенольные соединения в виде гликозидов извлекают из растительного сырья водой, затем извлечения очищают от сопутствующих веществ, осаждая их растворами ацетата свинца. С очищенным извлечением выполняют качественные реакции.

Характерные для фенольных соединений реакции:

·с железоаммонийными квасцами

·с солями тяжелых металлов

·с диазотированными ароматическими аминами.

Для количественного определения простых фенологликозидов в лекарственном растительном сырье используют различные методы: гравиметрические, титриметрические и физико-химические.

Гравиметрическим методом определяют содержание флороглюцидов в корневищах папоротника мужского. Метод основан на извлечении флороглюцидов из сырья диэтиловым эфиром в аппарате Сокслета. Извлечение очищают, отгоняют эфир, полученный сухой остаток высушивают и доводят до постоянной массы. В пересчете на абсолютно сухое сырье содержание флороглюцидов не менее 1,8%.

Титриметрический йодометрический метод используется для определения содержания арбутина в сырье брусники и толокнянки. Метод основан на окислении агликона гидрохинона до хинона 0,1 М раствором йода в кислой среде и в присутствии натрия гидрокарбоната.

Спектрофотометрический метод используется для определения содержания салидрозида в сырье родиолы розовой.

Сырьевая база. Фенольные соединения содержатся в растениях в виде гликозидов или в свободном состоянии, встречаются почти во всех растениях в количестве от 0,1 до 7 %. Богатые источники фенольных соединений - бурые морские водоросли, из некоторых видов которых фенольные соединения были выделены ещё в XIX в. Фенольные вещества широко распространены в растительном мире, они встречаются в самых различных органах растений.

Эфирные масла

Эфирными маслами называют смесь летучих, душистых веществ, образующихся в растениях и обладающих способностью перегоняться с водным паром. Главной составной частью эфирных масел являются терпены и их кислородсодержащие производные, реже - ароматические и алифатические соединения.

Классификация:

Эфирные масла представляют собой многокомпонентную смесь, поэтому классификация их условна. За основу принимаются главные ценные компоненты эфирного масла, являющиеся носителями запаха данного масла и обладающие биологической активностью. Все эфирные масла и растения, их содержащие, делятся на следующие группы:

Øациклические монотерпены (линалоол, гераниол, цитраль);

Øмоноциклические монотерпены (ментол, цинеол);

Øбициклические монотерпены (камфора, пинен);

Øсесквитерпены (азулен, сантонин);

Øароматические соединения (тимол).

Метод количественного определения содержания эфирного масла в растительном сырье основан на:

·физических свойствах эфирного масла - летучести и практической нерастворимости в воде;

·на отсутствии химического взаимодействия эфирного масла и воды;

·на законе Дальтона о парциальных давлениях.

Согласно закону, смесь жидкостей закипает тогда, когда сумма их парциальных давлений достигает атмосферного давления. Следовательно, давление паров смеси жидкостей (вода + эфирное масло) достигнет атмосферного давления еще до кипения воды. В соответствии с ГФ-Х1, вып. 1, стр.290 (раздел «Общие методы анализа») определение проводят одним из 4 методов в зависимости от количества в сырье эфирного масла, его состава, плотности и термолабильности.

Метод 1 и 2 применяют, если эфирное масло имеет плотность меньше 1 и не растворяется в воде. Метод 3 и 4 применяют для сырья, содержащего эфирное масло, которое претерпевает изменения, образует эмульсию, легко загустевает и имеет плотность близкую к единице.

Метод 1 (метод Гинзберга) - применяют для сырья, где много эфирного (масло термостабильное), в его составе преобладают моно- и бициклические монотерпены. Приемник для сбора эфирного масла помещается в экстрактивной колбе. Этим методом определяют содержание эфирного масла в сырье можжевельника, мяты, шалфея, эвкалипта, тмина.

Метод 2 (метод Клавенджера) - используют, когда сырье содержит эфирного масла менее 0.2-0.3 %. Этот метод дает меньшую ошибку опыта. Приемник вынесен за пределы экстракционной колбы, что позволяет определить в сырье содержание термолабильного эфирного масла. Этим методом определяют содержание эфирного масла в сырье ромашки, тмина, мяты, шалфея, эвкалипта.

Метод 3 (метод Клавенджера). Приемник см. 2-й метод. В приемник прибавляют органический растворитель для разрушения эмульсии или растворения загустевшего или тяжелого масла. Определяют эфирное масло в сырье аниса, аира, тысячелистника.

Метод 4 впервые включен в ГФ Х1 и отличается от 3-его метода возможностью контролировать температуру конденсации. Во время гидродистилляции температура в отстойнике не должна превышать 25°С.

В ГФ-Х1, вып.2, стр.227 на побеги багульника болотного даны два показателя содержания эфирного масла в сырье:

если сырье предназначено для получения экстемпоральных лекарственных форм, то эфирного масла должно быть не менее 0.1%;

если сырье предназначено для получения ледина, то эфирного масла должно быть не менее 0.7%.

Эфирные масла - бесцветные или желтоватые прозрачные жидкости, реже - темно-коричневые (коричное масло), красные (тимиановое масло), зеленые от присутствия хлорофилла (бергамотовое масло) или синие, зеленовато-синие от присутствия азулена (масло ромашки, тысячелистника, полыни горькой и цитварной). Запах масел характерный, ароматный. Вкус пряный, острый, жгучий. Большая часть эфирных масел имеет относительную плотность меньше единицы, некоторые (коричное, гвоздичное) - тяжелее воды. Эфирные масла почти не растворимы в воде, но при взбалтывании она приобретает их запах и вкус; почти все масла хорошо растворяются в спирте и смешиваются во всех пропорциях с хлороформом, петролейным эфиром. Реактив Судан III окрашивает масло в оранжевый цвет.

Химические свойства.

Эфирные масла являются сложными смесями различных органических соединений, среди которых основную группу составляют вещества с изопреновой структурой. Присутствуют монотерпены, сесквитерпены, реже - ароматические и алифатические соединения. Терпеноиды, содержащиеся в эфирных маслах, представлены альдегидами, кетонами, спиртами, фонолами, эфирами, лактонами, кислотами и другими соединениями

Сырьевая база.

Растения, содержащие эфирные масла (эфироносы), широко представлены в мировой флоре. Особенно богаты эфирными маслами растения тропиков и сухих субтропиков - 44% от числа растений-эфироносов приходится на эти районы. В медицинской практике используют растения Средиземноморья (анис, кориандр, фенхель, тимьян, шалфей). Растения семейства сельдерейных культивируют и в центральных черноземных областях России (Воронежской, Белгородской). Эфиросодержащие растения встречаются в умеренном климате: в зонах лесной, лесостепной, степной. В тундровой зоне из эфироносов растет лишь багульник болотный, а в лесостепной - душица, чабрец, девясил, аир, тмин, хмель и многие другие. Он ограничен только Европейской частью у девясила; занимает Европейскую часть России и Западную Сибирь - у липы, ромашки ромашковидной; Европейскую часть + Западную Сибирь + Восточную Сибирь - у чабреца, можжевельника, хмеля, душицы, полыни горькой, ромашки аптечной; Европейскую часть +Сибирь + Дальний Восток - у багульника, березы, валерианы, тысячелистника, тмина. Разорванный ареал у аира болотного: запад Европейской части России и Восточная Сибирь.

На Дальнем Востоке в диком виде встречается сосна обыкновенная, ель обыкновенная замещается викарными видами. В совхозе «Женьшень» в Приморском крае выращивают мяту перечную, валериану лекарственную. Различны места обитания: береза, сосна, тополь - растения лесов, валериана, тмин, тысячелистник - растения лугов, багульник - растение болот. База сырья большинства дикорастущих растений-эфироносов России значительна и обеспечивает потребность здравоохранения (сырье сосны, березы, можжевельника, багульника, душицы, чабреца, девясила, аира). Такие растения не только собирают в природе, но и культивируют. Это валериана, хмель, ромашка. Особое место среди эфироносов, разрешенных к медицинскому использованию в России, занимает арника горная.

Сапонины

Сапонины - это гетерозиды, производные стероидов и тритерпеноидов, обладающие гемолитической активностью и токсичностью для холоднокровных животных. Слово "сапонины" происходит от латинского названия растения Saponaria officinalis - мыльнянка лекарственная, из которой впервые в 1811 году было выделено вещество, обладающее указанными выше свойствами. Термин "сапонины" был предложен в 1819 г. Melon.

В зависимости от химической природы агликона сапонины делят на три группы:

Стероидные сапонины

Стероидные гликоалкалоиды

Тритерпеновые сапонины.


Физические свойства.

Сапонины - бесцветные или желтоватые гигроскопические кристаллические (чаще стероидные) или аморфные вещества с высокой температурой плавления (с разложением). Растворяются в воде; водные растворы при встряхивании образуют устойчивую пену за счет снижения сапонинами поверхностного натяжения жидкости. Растворимость в полярных растворителях (воде, спирте) увеличивается с возрастанием количества углеводных остатков в молекуле сапонина. Не растворяются в неполярных органических растворителях. Агликоны сапонинов не растворяются в воде, хорошо растворяются в спирте и других органических растворителях. Водные растворы сапонинов могут иметь кислую или нейтральную реакцию. Кислотные свойства могут быть обусловлены наличием карбоксильной группы у агликона и углеводного компонента. Необходимо иметь ввиду, что некоторые сапонины могут не давать устойчивой пены (глицирризин), а гемолиз крови вызывают и другие вещества.

Химические свойства.

Сапонины образуют (в том числе и в растениях) не растворимые в воде молекулярные комплексы со стеринами, липидами, дубильными веществами, белками. Эти комплексы разрушаются при нагревании с хлороформом. Поэтому перед экстракцией сапонинов из сырья, его рекомендуют предварительно обработать хлороформом в аппарате Сокслета в течение 2 часов. Сапонины гидролизуются ферментами и кислотами. С кислотными реагентами (конц. Кислота серная, кремневольфрамовая, уксусный ангидрид, сурьма трехвалентная и др.) сапонины образуют окрашенные продукты за счет образования ненасыщенных (полиеновых) сопряженных структур. Кислые сапонины, производные олеаноловой, урсоловой, глицирризиновой и др. кислот взаимодействуют со щелочами, а также солями тяжелых металлов (свинец, барий и др.), образуя не растворимые в воде осадки. Стероидные сапонины спиростанового типа дают осадки с холестерином. На физических, биологических и химических свойствах сапонинов основаны методы их анализа.

Количественное определение.

Используют весовой метод (осаждением сапонинов с последующим взвешиванием остатка), гемолитический и рыбный индексы, пенное число и химические методы.

Качественное определение.

Анализ сырья. Физический метод. Проба на пенообразование основана на высокой поверхностной активности. Раствор пенится при встряхивании и образуется обильная пена даже в очень больших разведениях. Берут 2 пробирки и наливают в одну из них 5 мл HCl, в другую - 5 мл NaOH. Добавляют в обе пробирки 2-3 капли извлечения или раствора сапонина. Сильно встряхивают. При наличии стероидных сапонинов в пробирке со щелочью образуется более обильная и стойкая пена, чем в пробирке с кислотой. Такой же результат можно получить, используя и тритерпеновые сапонины, которые имеют нейтральную реакцию. В этом случае следует провести еще реакцию на стероидное ядро. При наличии тритерпеновых сапонинов в обеих пробирках образуется пена, равная по объему и стойкости.

Химические методы. К ним относятся:

а) Реакции осаждения. В пробирки с настоями добавляют гидроксид Ва, Мn, ацетата свинца - сапонины осаждаются;

б) Проба Лафона. К 2 мл водного настоя прибавляют 1 мл концентрата серной кислоты, 1 мл этанола, 1 каплю 10% раствора сульфата железа. При нагревании появляется сине-зеленое окрашивание.

Биологические методы. Определяют гемолитический индекс - наименьшую концентрацию извлечения из сырья, которая вызывает полный гемолиз эритроцитов. Для этого к настою сырья на изотоническом растворе добавляют 2% взвесь бараньих эритроцитов. В результате гемолиза кровь становится прозрачной, ярко-красной, лакированной (эритроциты перейдут в плазму). Расчет проводят на 1 г испытуемого вещества. Кроме того, определяют силу действия сапонинового сырья на рыбах, то есть рыбный индекс. Это наименьшая концентрация извлечения, при которой гибнут рыбы массой до 0,5 г, длиной 3-4 см в течение 1 часа. В последнее время для обнаружения сапонинов в сырье начали использовать хроматографию на бумаге и в тонком слое сорбента.

Сырьевая база.

Лекарственные растения - диоскорея ниппонская, аралия маньчжурская - преимущественно дикорастущие дальневосточные виды. Женьшень обычно собирают с плантаций. В настоящее время изучаются надземные виды сырья - листья и плоды, что будет способствовать восстановлению зарослей женьшеня, аралии. Сырьевая база солодки не очень значительна. Потребность в корне этого растения велика как в медицине, так и в других отраслях народного хозяйства. Кроме того, Россия - крупнейший поставщик этого сырья на мировом рынке.

Сердечные гликозиды

"Сердечные гликозиды" это соединения специфической химической структуры, содержащиеся в ряде растений и обладающих характерной кардиотонической активностью. Это сложные органические соединения, расщепляющиеся при гидролизе на сахара (гликоны) и бессахаристую часть (агликоны или генины). Сердечные гликозиды представляют собой наиболее важную группу гликозидов, не имеющих себе равных синтетических заменителей и оказывающих сильное и специфическое воздействие на сердечную мышцу, увеличивая силу ее сокращений.

Лекарственные растения служат единственным источником получения сердечных гликозидов. Растения, содержащие сердечные гликозиды, известны давно. У народов разных стран они в течение многих веков применялись для лечения сердечных и других заболеваний.

Характеристика агликона.

Как и все гликозиды, гликозиды кардиотонического действия состоят из двух частей: сахаристых и несахаристых веществ - агликонов. Агликон гликозидов является производным циклопентанпергидрофенантрена (и относится к классу стероидов, к которым принадлежат и другие соединения, вырабатываемые растениями и животными, такие как витамин D, стероидные сапонины, фитостерины и холестерины, желчные кислоты, половые гормоны). Например, содержащийся в наперстянке гликозид дигинин, имеющий стероидное строение но лишенный лактонного кольца, сердечного действие не оказывает.


В зависимости от строения ненасыщенной: лактонного кольца все сердечные гликозиды делятся на две группы с пятичленным - карденолиды (гликозиды наперстянки, строфанта, ландыша, горицвета) и шестичленным - буфадиенолиды (гликозиды морозника) лактонным кольцом. В формуле карденолидов встречаются заместители: -СН3, -С-OH; в формуле буфадиенолидов заместителями могут быть -СН3, -С-OH, -СН2OН.

В зависимости от заместителя в положении C10 карденолиды подразделяются на три подгруппы.

Подгруппа наперстянки включает гликозиды, агликоны которых в положении С10 имеют метильную группу - СН3. Гликозиды этой подгруппы медленно всасываются и медленно выводятся из организма, обладают кумулятивным действием, например гликозид гитоксигенин.

Подгруппа строфанта - агликон имеет в положении 10 альдегидную группу -С-OH. Эти гликозиды быстро всасываются, быстро выводятся из организма и не обладают кумулятивным действием, например строфантидин.

Подгруппа объединяет сердечные гликозиды, имеющие в положении 10 спиртовую группу (-OН2OН):

Сердечные гликозиды, как и все другие гликозиды, по количеству остатков в углеводной части молекулы делят на монозиды, биозиды, триозиды и т. д.

Физико-химические свойства.

Сердечные гликозиды чаще кристаллические вещества, бесцветные или кремоватые, без запаха, горького вкуса; характеризуются определенной точкой плавления и углом вращения. Многие гликозиды обладают флюоресценцией в УФ-свете (ланатозиды наперстянки шерстистой). Сердечные гликозиды в основном мало растворимы в воде, хлороформе, но хорошо растворимы в водных растворах метанола и этанола. Агликоны сердечных гликозидов лучше растворимы в органических растворителях. Сердечные гликозиды легко подвергаются кислотному, щелочному и ферментативному гидролизу. При кислотном или щелочном гидролизе сразу происходит глубокое расщепление до агликона и cахаров.

Качественные реакции. Проводятся с индивидуальными веществами или очищенным извлечением из растительного сырья: на углеводную часть молекулы (реакция Келлер-Килиани); на стероидное ядро; на лактонное ненасыщенное кольцо (реакция Балье) - с пикриновой кислотой в щелочной среде. В полевых условиях пользуются пикратной бумагой, в которую завертывают свежее растение и надавливают плоскогубцами; появление красного окрашивания на бумаге характеризует присутствие сердечных гликозидов.

Количественное определение.

Проводится различными методами: фотоколометрическим, спектрофотометрическим, флюориметрическим, газожидкостной хроматографии и биологической стандартизации.

НТД на лекарственное растительное сырье, содержащее сердечные гликозиды, требует обязательной стандартизации сырья биологическими методами, которая проводится на лягушках, кошках, голубях. Активность оценивают по сравнению со стандартным кристаллическим препаратом и выражают в единицах действия (лягушачьих, кошачьих и голубиных). Чаще других используется стандартизация на лягушках. За единицу (1 ЛЕД) принято наименьшее количество испытуемого вещества, способное вызвать систолическую остановку сердца у животных в течение 1 ч. Для биологической стандартизации используют лягушек массой 25-40 г, предпочтительно самцов. Стандарты изготовляют и выпускают специализированные научно-исследовательские организации. В НТД на лекарственное растительное сырье, содержащее сердечные гликозиды, обязательно указывается валор. Валер сырья - это количество единиц действия в 1 г сырья. Например, при испытании на лягушках в 1 г листьев наперстянки пурпуровой должно содержаться не менее 50-66 ЛЕД, в траве ландыша майского - 120 ЛЕД, а в цветках ландыша - 200 ЛЕД. При испытании кардиотонических средств на кошках или голубях активность выражают в кошачьих и голубиных единицах действия: КЕД и ГЕД. Гликозиды действуют на сердце в 5-6 раз сильнее, чем их агликоны.

Сырьевая база.

К растениям, содержащим сердечные гликозиды, относятся разные виды наперстянки (Digitalis purpurea L., Digitalis Lanata Ehrh. и др.), горицвета (Аdonis vernalis L. и др.), ландыш (Соnvallaria majalis L,.), обвойник (Реriploca graeса L.), разные виды желтушника (Еrysimum саnescens Roth., Еrуsimum cheiranthоides L. и др.), строфанта (Strophanthus gratus, Strophanthus Коmbe), олеандр (Nerium оleander L.), морозник (Неllеbоrus рurрurascens W. еt К.), джут длинноплодный (Соrсhоrus оlitоrius L.), харг кустарниковый (Gomphocarpus fruticosus А. Вr.) и др.

9. Алкалоиды

Алкалоиды - это природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Большинство их относится к соединениям с гетероциклическим атомом азота в кольце, реже азот находится в боковой цепи. Синтезируются преимущественно растениями. В переводе термин "алкалоид" (от араб. "alkali" - щелочь и греч. "eidos" - подобный) означает щелочноподобный. Подобно щелочам, алкалоиды образуют с кислотами соли.

Классификация.

В фармакогнозии принята химическая классификация сырья, содержащего алкалоиды, разработанная акад. А. П. Ореховым. В основу классификации положено деление на группы в зависимости от строения углеродного скелета. Из них некоторые группы встречаются редко.

Алкалоиды с азотом в боковой цепи - эфедрин из различных видов эфедры, сферофизин из травы сферофизы солонцовой, колхицин и колхамин из клубнелуковиц безвременников.

Производные пирролидина и пирролизидина (платифиллин, саррацин, сенецифилллин из крестовника плосколистного и ромболистного).

Производные пиридина и пиперидина (анабазин, лобелин) из анабазиса безлистного и лобелии одутлой.

Алкалоиды с конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - гиосциамин, атропин, скополамин из красавки, белены, дурмана.

Производные хинолизидина (пахикарпин, термопсин) - софора толстоплодная, термопсис.

Производные хинолина - хинин из хинной коры, эхинопсин из плодов мордовника.

Производные изохинолина - сальсолин из солянки Рихтера, морфин и папаверин из коробочек мака, алкалоиды чистотела, барбариса, мачка желтого.

Производные индола - алкалоиды спорыньи, барвинков, резерпин из корня раувольфии, стрихнин из семян чилибухи, катарантус розовый.

Производные пурина - кофеин из листьев чая и семян колы.

Стероидные алкалоиды - соласонин паслена дольчатого, алкалоиды чемерицы и др.

Физико-химические свойства.

В состав алкалоидов в основном входят углерод, водород, азот и кислород; алкалоиды кубышки дополнительно содержат серу.

Большинство алкалоидов, содержащих кислород - бесцветные, оптически активные, кристаллические или аморфные вещества со щелочной реакцией; некоторые алкалоиды окрашены (например, алкалоид берберин из барбариса желтого цвета), без запаха, горького вкуса. Бескислородные алкалоиды - летучие жидкости с неприятным запахом (например, алкалоид никотин из табака, кониин из болиголова).

Алкалоиды-основания, в воде почти нерастворимы; растворяются в спирте, эфире, хлороформе и других органических растворителях. Соли алкалоидов растворимы в воде и спирте, но нерастворимы в органических растворителях. Алкалоиды в растениях находятся в виде солей, связаны с органическими кислотами: щавелевой, лимонной, яблочной, винной. Для мака снотворного характерна меконовая кислота, а для хинной коры - хинная кислота.

Химические свойства.

Алкалоиды - довольно слабые основания. К наиболее слабым основаниям относится кофеин (константа диссоциации 10-14), к наиболее сильным - кодеин (К = 9·10-7). Благодаря основному характеру, алкалоиды при взаимодействии с кислотами образуют соли. Слабые основания (раствор аммиака, карбонаты, гидроокись бария или кальция и магния оксид) разлагают соли алкалоидов до свободных оснований. Это свойство широко используют при выделении и очистке алкалоидов, количественном определении алкалоидов, получении препаратов. Под действием сильных щелочей алкалоиды гидролизуются. Это необходимо учитывать при выделении их из сырья.

Алкалоиды образуют осадки с солями тяжелых металлов, с комплексными соединениями, с некоторыми органическими соединениями кислого характера, например, с пикриновой кислотой, танином (эти свойства алкалоидов используют для их обнаружения).

Качественные реакции.

Для обнаружения алкалоидов применяют реакции, в результате которых образуются осадки или характерное окрашивание.

Общие осаждающие реакции. Позволяют установить присутствие алкалоидов даже при незначительном их содержании. Из общих алкалоидных реактивов часто используют следующие: танин, дихлорид ртути, раствор иода в иодиде калия, пикриновую и фосфорномолибденовую кислоты, хлорную платину и золото, соли тяжелых металлов и др.

Специальные цветные реакции. Применяют при анализе от дельных алкалоидов - чистых или с очищенными извлечениями. Для этого несколько капель очищенного хлороформного или эфирного извлечения испаряют в фарфоровой чашке, прибавляют к остатку тот или иной реактив; при этом образуется соответствующее окрашивание. В других случаях готовят извлечение (например, из листьев белладонны: 2 г листьев кипятят с 50 мл 1-2% хлористоводородной или уксусной кислоты в течение 10 мин). Извлечение фильтруют и разливают в пробирки. Наиболее распространенные реактивы - концентрированная серная и азотная кислоты, раствор формалина в серной кислоте.

Кроме качественных реакций (осаждающих и цветных), для обнаружения алкалоидов используют люминесцентный анализ. Установлено, что ряд веществ в УФ-лучах дает характерное свечение: например, хинин - синюю флюоресценцию, гидрастин - золотистую.

Количественное определение.

Среди методов количественного определения алкалоидов в растениях распространены весовой, объемный, физико-химический. Перед количественным анализом алкалоиды выделяют из сырья - либо в виде солей, либо в виде оснований. Для каждого растения разработан специальный метод, указанный в Фармакопее или других руководствах.

Сырьевая база.

Содержание алкалоидов в растениях, как правило, невелико - от следов до нескольких процентов. Они накапливаются во многих частях растений, но чаще преобладают в одном органе, например в листьях (чай), в траве (чистотел), коре (хинное дерево). Большинство растений в своем составе содержат не один, а несколько алкалоидов. Алкалоидоносные растения составляют примерно 10% мировой флоры.

Это пиперин в черном перце, кофеин в плодах кофе, листьях чая, какао, теобромин и теофиллин содержатся в зернах какао, берберин в плодах барбариса и т.д.

полисахарид витамин гликозид растение

Используемая литература

1. Соколов С.Я. Фитотерапия и фитофармакология: Руководство для врачей. - М.: Медицинское информационное агентство, 2000г.

Фитотерапия с основами клинической фармакологии / Под ред. В.Г. Кукеса. - М.: Медицина, 1999г.

Дроговоз С.М., Гудзенко А.П., Бутко Я.А. и др. Побочное действие лекарств: Учебник-справочник. - Х.: СИМ, 2010г.

Куркин В.А. Фармакогнозия: Учебник для студентов фармацевтических вузов. - Самара: ООО «Офорт», ГОУ ВПО «СамГМУ», 2004г.

Машковский М.Д. Лекарственные средства: в 2 т. - 14-е изд., перераб., испр. и доп. - М.: ООО «Издательство Новая Волна», 2002г.

Федюкович Н.И. Фармакология для медицинских училищ и колледжей: Учеб. пособие. - Ростов-на-Дону: Феникс, 2001г.