Введение. Цитокины, общая характеристика, свойства, классификация, механизмы действия Цитокины определение классификация типы действия

5991 0

Иммунная система регулируется растворимыми медиаторами, которые называются цитокинами. Эти белки низкой молекулярной массы продуцируются фактически всеми клетками врожденной и адаптивной иммунной систем и в особенности CD4+-Т-клетками, которые регулируют многие эффекторные механизмы. Важным функциональным свойством цитокинов является регуляция развития и поведения клеток-эффекторов иммунной системы.

Некоторые цитокины непосредственно влияют на синтез и работу других цитокинов. Чтобы проще представить, как работают цитокины, сравним их с гормонами - химическими посредниками эндокринной системы. Цитокины служат химическими медиаторами в пределах иммунной системы , хотя также взаимодействуют с определенными клетками других систем, включая нервную. Таким образом, они участвуют в поддержании гомеостаза.

При этом они играют значительную роль в управлении гиперчувствительностью и воспалительным ответом и в некоторых случаях могут способствовать развитию острого или хронического повреждения тканей и органов.

Регулируемые определенным цитокином, должны экспрессировать рецептор к этому фактору. Позитивная и/или негативная регуляция клеточной активности зависит от количества и типа цитокинов, к которым чувствительна клетка, а также от повышения или снижения экспрессии цитокиновых рецепторов. В норме в регуляции врожденных и приобретенных иммунных ответов задействован комплекс этих методов.

История цитокинов

Активность цитокинов открыли в конце 1960 г. Первоначально предполагали, что они служат факторами амплификации, действующими антигензависимо, повышая пролиферативные ответы Т-клеток И.Джери (l.Gery) и соавторы впервые показали, что макрофаги высвобождали митогенный фактор тимоцитов, названный ими лимфоцитактивирующим фактором (LAF) . Этот взгляд радикально изменился, когда обнаружили, что надосадочная жидкость мононуклеаров периферической крови, стимулированных митогеном, вызывает длительную пролиферацию Т-клеток в отсутствие антигенов и митогенов.

Вскоре после этого выяснилось, что для изоляции и клональной экспансии линий функциональных Т-клеток может использоваться фактор, продуцируемый самими Т-клетками. Этому фактору, полученному из Т-клеток, разные исследователи давали разные названия; наиболее известное среди них - Т-клеточный фактор роста (TCGF) . Цитокины, продуцируемые лимфоцитами, назвали лимфокинами, а продуцируемые моноцитами и макрофагами - монокинами.

Результаты исследования клеточного источника лимфокинов и монокинов, в конечном счете, выявили, что эти факторы не были продуктами исключительно лимфоцитов или моноцитов/макрофагов, что осложнило понимание вопроса. Таким образом, как общее название этих гликопротеиновых медиаторов был принят термин «цитокин».

В связи с необходимостью выработки соглашения, регулирующего определение факторов, полученных из макрофагов и Т-клеток, в 1979 г. была создана международная рабочая группа, которая занималась разработкой их номенклатуры. Поскольку цитокины передавали сигнал от лейкоцита к лейкоциту, был предложен термин «интерлейкин» (IL). Макрофагальному фактору LAF и Т-клеточному фактору роста дали названия ин-терлейкин-1 (IL-1) и интерлейкин-2 (IL-2) соответственно. На сегодняшний день исследовано 29 интерлейкинов, и число их будет, несомненно, возрастать, поскольку продолжаются попытки идентифицировать новых представителей этого семейства цитокинов.

По мере приобретения новых знаний о функциональных свойствах цитокинов в термины, первоначально предназначенные для определения их функций, стали вкладывать более широкий смысл. Об этом свидетельствует и то, что терминология, принятая в 1979 г., устаревает. Хорошо известно, что многие интерлейкины оказывают важные биологические эффекты на клетки, не принадлежащие иммунной системе. Например, IL-2 не только активирует Т-клеточную пролиферацию, но и стимулирует остеобласты - клетки, формирующие кость.

Трансформирующий фактор роста β (TGFβ) также действует на клетки разных типов, в том числе фибробласты соединительной ткани, Т- и В-лимфоциты. Таким образом, цитокины в основном обладают плейотропными свойствами, поскольку они могут влиять на активность множества разных клеточных типов. Кроме того, среди цитокинов выражена избыточность функций, что доказывается, например, способностью активировать рост, выживаемость и дифференцировку В- и Т-клеток более чем одним цитокином (например, и IL-2, и IL-4 могут функционировать как Т-клеточные факторы роста). Этот избыток частично объясняется использованием общих сигнальных субъединиц цитокинового рецептора определенными группами цитокинов.

В конечном счете, цитокины редко, если вообще когда-нибудь, действуют в организме в одиночку. Таким образом, клетки-мишени восприимчивы к окружению, содержащему цитокины, которые часто проявляют аддитивные, синергитические или антагонистические свойства. В случае синергизма совместное действие двух цитокинов вызывает более выраженный эффект, чем сумма эффектов отдельных цитокинов. И наоборот, когда один цитокин ингибирует биологическую активность другого, говорят об их антагонизме.

С 1970 г. знания о цитокинах быстро увеличиваются благодаря их идентификации, определению функциональных характеристик и молекулярному клонированию. Удобная номенклатура, разработанная ранее на основании клеточных источников или функциональной активности определенных цитокинов, не была широко поддержана. Тем не менее время от времени по мере нахождения общих функциональных черт нескольких гликопротеинов вводятся дополнительные термины, определяющие это семейство цитокинов.

В частности, термин «хемокины», принятый в 1992 г., определяет семейство близкородственных хемотаксических цитокинов, имеющих консервативные последовательности и являющихся мощными аттрактантами для разных популяций лейкоцитов, таких как лимфоциты, нейтрофилы и моноциты. Для студентов-иммунологов изучение быстро расширяющегося списка цитокинов с разнообразными функциональными характеристиками может представлять значительные трудности. Однако достаточно сосредоточиться на отдельных заслуживающих особого внимания цитокинах, что будет интересной и посильной задачей.

Общие свойства цитокинов

Общие функциональные свойства

Цитокины обладают некоторыми общими функциональными чертами. Некоторые, такие как интерферон-у (IFNy) и IL-2, синтезируются клетками и быстро секретируются. Другие, такие как фактор некроза опухоли a (TNFα) и TNFβ, могут секретироваться или экспрессироваться как белки, связанные с мембранами. У большинства цитокинов очень короткий период полураспада; следовательно, синтез цитокинов и их функционирование обычно происходят импульсивно.

Рис. 11.1. Аутокринные, паракринные и эндокринные свойства цитокинов. Например, головной мозг отвечает на воздействие цитокинов как на эндокринное воздействие

Подобно полипептидным гормонам цитокины обеспечивают взаимосвязь между клетками в очень низких концентрациях (обычно от 10-10 до 10-15 М). Цитокины могут действовать локально и на ту клетку, которая их секретировала (аутокринно), и на другие близко расположенные клетки (паракринно); более того, они могут действовать системно, как гормоны (эндокринно) (рис. 11.1). Так же, как и другие полипептидные гормоны, цитокины проявляют свои функции, связываясь со специфичными рецепторами на клетках-мишенях. При этом клетки, регулируемые определенными цитокинами, должны экспрессировать рецептор для данного фактора.

Таким образом, активность отвечающих клеток может регулироваться количеством и типом цитокинов, к которым они чувствительны, или повышением/понижением экспрессии цитокиновых рецепторов, которые сами могут регулироваться другими цитокинами. Хорошим примером последнего положения служит способность IL-1 повышать экспрессию рецепторов для IL-2 на Т-клетках. Как отмечено ранее, это иллюстрирует одну общую черту цитокинов, а именно, их способность совместно действовать, создавая эффект синергизма, что усиливает их воздействие на единичную клетку.

При этом некоторые цитокины находятся в антагонистических отношениях с одним или более цитокином и таким образом ингибируют действие друг друга на данную клетку. Например, цитокины, секретируемые Т-хелперами (Тн1)-секретируют IFNy, который активирует макрофаги, ингибирует В-клетки и непосредственно токсичен для определенных клеток. Тн2-клетки секретируют IL- 4 и IL-5, которые активируют В-клетки и IL-10, который в свою очередь ингибирует активацию макрофагов (рис. 11.2).


Рис. 11.2. Цитокины, продуцируемые Тн1- иТн2-клетками

Когда клетки продуцируют цитокины или хемокины в ответ на различные стимулы (т.е. инфекционные агенты), те создают градиент концентрации, который позволяет контролировать или направлять клеточную миграцию, также называемую хемотаксисом (рис. 11.3). Клеточная миграция (т.е. хемотаксис нейтрофилов) необходима для развития воспалительных реакций, возникающих вследствие локального проникновения микроорганизмов или другой травмы.


Рис. 11.3. Стадии хемотаксиса нейтрофилов (обратимое связывание, последующая активация, адгезия) и трансэндотелиальная миграция (продвижение между эндотелиальными клетками, формирующими стенку кровеносного сосуда, экстравазация)

Хемокины играют ключевую роль в обеспечении сигналов, которые повышают экспрессию адгезионных молекул, экспрессируемых на эндотелиальных клетках для обеспечения хемотаксиса нейтрофилов и трансэндотелиальной миграции.

Общая системная активность

Цитокины могут действовать непосредственно в месте секреции и отдаленно, вплоть до системных эффектов. Таким образом, они играют решающую роль в усилении иммунного ответа, поскольку высвобождение цитокинов из всего лишь нескольких клеток, активированных антигеном, приводит к активации множества клеток различных типов, которые необязательно являются антигенспецифичными или находятся непосредственно в данной области. Особенно ярко это проявляется в реакциях ГЗТ, при которых активация редких антигенспецифичных Т-клеток сопровождается высвобождением цитокинов. Как следствие действия цитокинов в эту зону моноциты привлекаются в большом количестве, значительно превышающем изначально активированную Т-клеточную популяцию.

Также необходимо отметить, что продукция высоких концентраций цитокинов под влиянием мощных стимулов может запускать разрушительные системные эффекты, такие как синдром токсического шока, обсуждаемый далее в этой главе. Применение рекомбинантных цитокинов или антагонистов цитокинов, способных воздействовать на разные физиологические системы, обеспечивает возможность терапевтической коррекции иммунной системы, основанной на спектре биологической активности, которая связана с данным цитокином.

Общие клеточные источники и каскадность событий

Определенная клетка может продуцировать множество различных цитокинов. Более того, одна клетка может быть мишенью для многих цитокинов, каждый из которых связывается со своими специфичными рецепторами на клеточной поверхности. Следовательно, один цитокин может влиять на действие другого, что может привести к аддитивному, синергетическому или антагонистическому действию на клетку-мишень.

Взаимодействия множества цитокинов, выделяемых при типичном иммунном ответе, обычно называют цитокиновым каскадом. В основном именно этот каскад определяет, будет ли ответ на антиген преимущественно антитело-опосредованным (и если так, какие классы антител будут синтезироваться) или клеточноопосредованным (и если так, то какие клетки будут активироваться - обладающие цитотоксическим действием или участвующие в ГЗТ). Механизмы контроля, также опосредованные цитокинами, которые помогают определить набор цитокинов, выделяющихся после активации СD4+-Т-клеток.

Похоже, что в инициации цитокинового ответа этих клеток ведущую роль играет стимуляция антигеном. Таким образом, в зависимости от природы антигенного сигнала и набора цитокинов, связанных с активацией Т-клетки, наивная эффекторная СD4+-Т-клетка будет приобретать определенный цитокиновый профиль, который однозначно определит тип формируемого иммунного ответа (опосредованный антителами или клетками). Цитокиновый каскад, связанный с типами иммунного ответа, также определяет, какие еще системы активируются или угнетаются, а также выраженность и продолжительность иммунного ответа.

Общие рецепторные молекулы

Цитокины обычно обладают перекрывающимися, избыточными функциями: например, и IL-1, и IL-6 вызывают лихорадку и еще несколько общих биологических феноменов. Вместе с тем эти цитокины обладают и уникальными свойствами. Как будет обсуждаться далее, некоторые цитокины для распространения своего действия на клетки-мишени используют рецепторы, состоящие из нескольких полипептидных цепей, причем некоторые из этих рецепторов обладают по меньшей мере одной общей рецепторной молекулой , которую называют общей у-цепью (рис. 11.4). Общая у-цепь является внутриклеточной сигнальной молекулой. Эти данные помогают объяснить наличие перекрывающихся функций у разных цитокинов.


Рис. 11.4. Структурные характеристики членов семейства цитокиновых рецепторов I класса. Одинаковая у всех ү-цепь (зеленая) передает сигнал внутрь клетки

Р.Койко, Д.Саншайн, Э.Бенджамини

Общая характеристика цитокинов. Цитокины -- самая многочисленная, наиболее важная и универсальная в функциональном отношении группа гуморальных факторов системы иммунитета, в равной степени важная для реализации врожденного и адаптивного иммунитета. Цитокины участвуют во многих процессах; их нельзя назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе, межсистемной передаче сигналов.

Цитокины можно определить, как белковые или полипептидные факторы, лишенные специфичности в отношении антигенов, продуцируемые преимущественно активированными клетками кроветворной и иммунной систем и опосредующие межклеточные взаимодействия при кроветворении, воспалении, иммунных процессах и межсистемных коммуникациях.

Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул:

  • · Цитокины - это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).
  • · Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.
  • · Секреция цитокинов - короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).
  • · В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов - межклеточный синапс.
  • · Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.
  • · Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОб, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.
  • · Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.
  • · Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE (ИЛ-4, ИЛ-5 и ИЛ-13).

Классификация цитокинов. Существует несколько классификаций цитокинов, основанных на разных принципах. Традиционная классификация отражает историю изучения цитокинов. Идея о том, что цитокины играют роль факторов, опосредующих функциональную активность клеток иммунной системы, возникла после открытия гетерогенности популяции лимфоцитов и осмысления факта, что только некоторые из них -- В-лимфоциты -- ответственны за образование антител. Пытаясь выяснить, не играют ли гуморальные продукты Т-клеток роль в реализации их функций, начали изучать биологическую активность факторов, содержащихся в культуральной среде Т-лимфоцитов (особенно активированных). Решение этой задачи, а также возникшего вскоре вопроса о гуморальных продуктах моноцитов/макрофагов, привело к открытию цитокинов. Вначале их называли лимфокинами и монокинами, в зависимости от того, какие клетки их продуцировали -- Т-лимфоциты или моноциты. Вскоре выяснилось, что четко разграничить лимфокины и монокины нельзя, и был введен общий термин -- «цитокины». В 1979 г. На симпозиуме по лимфокинам в Интерлакене (Швейцария) установили правила идентификации факторов этой группы, которым присвоили групповое название «интерлейкины» (IL). Тогда же свои названия получили два первых члена этой группы молекул -- IL-1 и IL-2. С тех пор все новые цитокины (кроме хемокинов -- см. далее) получали обозначение IL и порядковый номер.

Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов:

  • · Интерлейкины (ИЛ-1-ИЛ-33) - секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на про- и противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.
  • · Интерфероны (ИФН) - цитокины, участвующие в противовирусной защите, с выраженным иммунорегуляторным действием (ИФН типа 1 - ИФН б, в, д, к, ?, ф; группы ИФНподобных цитокинов - ИЛ-28А, ИЛ-28В и ИЛ-29; ИФН типа 2 - ИФНг).
  • · Факторы некроза опухоли (ФНО) - цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).
  • · Факторы роста гемопоэтических клеток - фактор роста стволовых клеток (Kit-ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор - ГМ-КСФ, гранулоцитарный КСФ - Г-КСФ, макрофагальный КСФ - М-КСФ).
  • · Хемокины - С, СС, СХС (ИЛ-8), СХ3С - регуляторы хемотаксиса различных типов клеток.
  • · Факторы роста нелимфоидных клеток - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов - ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста - ЭФР эпидермиса) и трансформирующие факторы роста (ТФРв, ТФРб).

Понятие «цитокины» достаточно трудно отграничить от понятия «ростовые факторы». Более точному пониманию понятия «интерлейкин» (фактически совпадающего с понятием «цитокин») способствовало введение Номенклатурным комитетом Международного союза иммунологических обществ в 1992 г. критериев, регламентирующих присвоение новым интерлейкинам очередного номера: для этого требуется молекулярное клонирование, секвенирование и экспрессия гена интерлейкина, удостоверяющие уникальность его нуклеотидной последовательности, а также получение нейтрализующих моноклональных антител. Для установления отличий между интерлейкинами и сходными факторами важны данные о выработке этой молекулы клетками иммунной системы (лейкоцитами) и доказательство ее роли в регуляции иммунных процессов. Таким образом, подчеркивается обязательное участие интерлейкинов в функционировании иммунной системы. Если считать, что интерлейкинами называют все открытые после 1979 г. цитокины (кроме хемокинов) и, следовательно, эти понятия фактически тождественны, то можно считать, что такие ростовые факторы, как эпидермальный, фибробластный, тромбоцитарный не являются цитокинами, а из трансформирующих факторов роста (TGF) по признаку функциональной причастности к иммунной системе лишь TGFв может быть отнесен к цитокинам. Однако этот вопрос в международных научных документах строго не регламентирован.

Четкая структурная классификация цитокинов отсутствует. Тем не менее по особенностям их вторичной структуры выделяют несколько групп:

  • · Молекулы с преобладанием б-спирализованных тяжей. Они содержат 4 б-спиральных домена (2 пары б-спиралей, расположенных под углом друг к другу). Выделяют короткий и длинный (по протяженности б-спиралей) варианты. К первому относят большинство цитокинов-гемопоэтинов -- IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-13, IL-21, IL-27, IFNг и M-CSF; ко второму -- IL-6, IL-10, IL-11 и GM-CSF.
  • · Молекулы с преобладанием в-складчатых структур. К ним относят цитокины семейства фактора некроза опухоли и лимфотоксины («в-трилистник»), семейство IL-1 (в-сендвич), семейство TGF (цитокиновый узел).
  • · Короткая б/в-цепь (в-пласт с прилежащими б-спиралями) -- хемокины.
  • · Смешанные мозаичные структуры, например, IL-12.

В последние годы в связи с идентификацией большого числа новых цитокинов, иногда родственных ранее описанным, и образующих с ними единые группы, стали широко использовать классификацию, основанную на принадлежности цитокинов к структурно-функциональным семействам.

Еще одна классификация цитокинов основана на структурных особенностях их рецепторов. Как известно, через рецепторы и осуществляется действие цитокинов. По особенностям структуры полипептидных цепей выделяют несколько групп цитокиновых рецепторов. Приводимую классификацию применяют именно к полипептидным цепям. В состав одного рецептора могут входить цепи, относящиеся к разным семействам. Важность этой классификации обусловлена тем, что для разных типов полипептидных цепей рецепторов характерен определенный сигнальный аппарат, состоящий из тирозинкиназ, адапторных белков и транскрипционных факторов.

Наиболее многочисленный тип -- цитокиновые гемопоэтиновые рецепторы. Для их внеклеточных доменов характерно наличие 4 остатков цистеина и присутствие последовательности, содержащей остатки триптофана и серина -- WSXWS. Домены семейства фибронектина, содержащие 4 остатка цистеина, составляют основу рецепторов интерферонов. Характерная черта доменов, образующих внеклеточную часть рецепторов семейства TNFR, -- высокое содержание остатков цистеина («богатые цистеином домены»). Эти домены содержат 6 остатков цистеина. Группа рецепторов, внеклеточные домены которых относят к суперсемейству иммуноглобулинов, включает две группы -- рецепторы для IL-1 и несколько рецепторов, цитоплазматическая часть которых обладает тирозинкиназной активностью. Тирозинкиназная активность свойственна цитоплазматической части практически всех ростовых факторов (EGF, PDGF, FGF и т.д.). Наконец, особую группу образуют родопсиноподобные рецепторы хемокинов, 7-кратно пронизывающие мембрану. Однако не все полипептидные цепи рецепторов соответствуют этой классификации. Так, ни б-, ни в-цепи рецептора IL-2 не относят к семействам, представленным в таблице 3 (б-цепь содержит домены контроля комплемента). В основные группы также не входят рецепторы IL-12, общая в-цепь рецепторов IL-3, IL-5, GMCSF и некоторые другие полипептидные цепи рецепторов.

Практически все цитокиновые рецепторы (кроме иммуноглобулиноподобных, обладающих киназной активностью) состоят из нескольких полипептидных цепей. Нередко разные рецепторы содержат общие цепи. Наиболее яркий пример -- г-цепь, общая для рецепторов IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, обозначаемая как г(с). Дефекты этой цепи играют важную роль в развитии иммунодефицитной патологии. Общая в-цепь входит в состав рецепторов GM-CSF, IL-3 и IL-5. Общие цепи имеют IL-7 и TSLP (б-цепь), а также IL-2 и IL-15, IL-4 и IL-13 (в обоих случаях -- в-цепь).

Как правило, рецепторы представлены на поверхности покоящихся клеток в небольшом количестве и нередко в неполном субъединичном составе. Обычно в таком состоянии рецепторы обеспечивают адекватный ответ только при действии очень высоких доз цитокинов. При активации клеток число мембранных рецепторов цитокинов увеличивается на порядки, более того, эти рецепторы «доукомплектовываются» полипептидными цепями, как это было показано выше на примере рецептора для IL-2. Под влиянием активации число молекул этого рецептора значительно возрастает и в их составе появляется б-цепь, ген которой экспрессируется в процессе активации. Благодаря таким изменениям лимфоцит приобретает способность пролиферировать в ответ на действие IL-2.

Механизмы действия цитокинов

Внутриклеточная передача сигнала при действии цитокинов. В состав С-концевой цитоплазматической части некоторых цитокиновых рецепторов (относящихся к суперсемейству иммуноглобулинов) входит домен, обладающий активностью тирозинкиназы. Все эти киназы относятся к разряду протоонкогенов, т.е. при изменении генетического окружения становятся онкогенами, обеспечивая бесконтрольную пролиферацию клетки. Эти киназы имеют собственное название. Так, киназу, входящую в состав рецептора M-CSF, обозначают как c-Fms; киназу SCF -- c-Kit; известна киназа гемопоэтического фактора -- Flt-3 (Fms-like thyrosine kinase 3). Рецепторы, обладающие собственной киназной активностью, запускают передачу сигнала непосредственно, поскольку их киназа обусловливает фосфорилирование как самого рецептора, так и прилежащих к нему молекул.

Наиболее типичный вариант проявления активности характерен для рецепторов гемопоэтинового (цитокинового) типа, содержащих 4 б-спиральных домена. К цитоплазматической части таких рецепторов примыкают молекулы тирозинкиназ группы Jak-киназ (Janus-associated family kinases). В цитоплазматической части цепей рецепторов есть специальные участки для связывания этих киназ (проксимальный и дистальный боксы). Всего известно 5 Janus-киназ -- Jak1, Jak2, Jak3, Tyk1 и Tyk2. Они в различных комбинациях кооперируются с разными цитокиновыми рецепторами, обладая сродством к конкретным полипептидным цепям. Так, киназа Jak3 взаимодействует с г(с)-цепью; при дефектах гена, кодирующего эту киназу, развивается комплекс нарушений в иммунной системе сходный с наблюдаемым при дефектах гена полипептидной цепи рецептора.

При взаимодействии цитокина с рецептором происходит генерация сигнала, приводящего к формированию транскрипционных факторов и активации генов, определяющих реакцию клетки на действие цитокина. Одновременно происходит поглощение клеткой комплекса цитокина с рецептором и расщепление его в эндосомах. Сама по себе интернализация этого комплекса к передаче сигнала отношения не имеет. Она необходима для утилизации цитокина, предотвращающей его накопление в месте активации клеток-продуцентов. Большую роль в регуляции этих процессов играет сродство рецептора к цитокину. Только при достаточно высокой степени сродства (порядка 10-10 М) генерируется сигнал и происходит поглощение комплекса цитокина с рецептором.

Индукция сигнала начинается с аутокаталитического фосфорилирования связанных с рецептором Jak-киназ, запускаемого конформационными измененями рецептора, которые происходят в результате его взаимодействия с цитокином. Активированные Jak-киназы фосфорилируют цитоплазматические факторы STAT (Signal transducers and activators of transcription), присутствующие в цитоплазме в неактивной мономерной форме.

Фосфорилированные мономеры приобретают сродство друг к другу и димеризуются. Димеры STAT перемещаются в ядро и выступают в качестве транскрипционных факторов, связываясь с промоторными участками генов-мишеней. При действии провоспалительных цитокинов активируются гены молекул адгезии, самих цитокинов, ферментов окислительного метаболизма и др. При действии факторов, вызывающих пролиферацию клеток, происходит индукция генов, ответственных за прохождение клеточного цикла и т.д.

Jak/STAT-опосредованный путь передачи сигналов от цитокинов -- основной, но не единственный. С рецептором связаны не только Jak-киназы, но и киназы семейства Src, а также PI3K. Их активация запускает дополнительные сигнальные пути, приводящие к активации АР-1 и других транскрипционных факторов. Активируемые транскрипционные факторы участвуют не только в передаче сигнала от цитокинов, но и в других сигнальных путях.

Существуют сигнальные пути, участвующие в контроле биологических эффектов цитокинов. Такие пути связаны с факторами группы SOCS (Suppressors of cytokine signaling), содержащей фактор SIC и 7 факторов SOCS (SOCS-1 -- SOCS-7). Включение этих факторов происходит при активации цитокиновых сигнальных путей, что приводит к образованию петли отрицательной обратной связи. Факторы SOCS содержат домен SH2, участвующий в реализации одного из следующих процессов:

  • · прямого ингибирования Jak-киназ в результате связывания с ними и индукции их дефосфорилирования;
  • · конкуренции с факторами STAT за связывание с цитоплазматической частью цитокиновых рецепторов;
  • · ускорения деградации сигнальных белков по убиквитиновому пути.

Выключение генов SOCS приводит к нарушению баланса цитокинов с преобладанием синтеза IFNг и сопутствующей этому лимфопенией и усилением апоптоза.

Особенности функционирования системы цитокинов. Цитокиновая сеть.

Из сказанного выше следует, что при активации клеток чужеродными агентами (носителями PAMP при активации миелоидных клеток и антигенами при активации лимфоцитов) индуцируется (или усиливается до функционально значимого уровня) как синтез цитокинов, так и экспрессия их рецепторов. Это создает условия для локального проявления эффектов цитокинов. Действительно, если один и тот же фактор активирует и клетки-продуценты цитокинов, и клетки-мишени, создаются оптимальные условия для локального проявления функций этих факторов.

Обычно цитокины связываются, подвергаются интернализации и расщеплению клеткой-мишенью, практически не диффундируя от секретируемых клеток-продуцентов. Нередко цитокины бывают трансмембранными молекулами (например, IL-1б и TNFб) или представляются клеткам-мишеням в связанном с пептидогликанами межклеточного матрикса состоянии (IL-7 и ряд других цитокинов), что также способствует локальному характеру их действия.

В норме цитокины если и содержатся в сыворотке крови, то в концентрациях, недостаточных для проявления их биологических эффектов. Далее на примере воспаления мы рассмотрим ситуации, в которых цитокины оказывают системное действие. Однако эти случаи всегда являются проявлением патологии, иногда очень серьезной. По-видимому, локальный характер действия цитокинов имеет для нормального функционирования организма принципиальное значение. Об этом свидетельствует высокая скорость их выведения через почки. Обычно кривая выведения цитокинов состоит из двух компонент -- быстрой и медленной. Т1/2 быстрой компоненты для IL-1в составляет 1,9 мин, для IL-2 -- 5 мин (Т1/2 медленной составляет 30-120 мин). Свойство близкодействия отличает цитокины от гормонов -- дальнодействующих факторов (поэтому утверждение «цитокины -- это гормоны иммунной системы» принципиально неверно).

Для системы цитокинов характерна избыточность. Это означает, что практически любую выполняемую конкретным цитокином функцию дублируют другие цитокины. Именно поэтому выключение отдельного цитокина, например, вследствие мутации его гена, не вызывает фатальных последствий для организма. Действительно, мутация гена конкретного цитокина практически никогда не приводит к развитию иммунодефицита.

Например, IL-2 известен как фактор роста Т-клеток; при искусственном удалении (путем генетического нокаута) кодирующего его гена существенного нарушения пролиферации Т-клеток не выявляют, однако регистрируют изменения, обусловленные дефицитом регуляторных Т-клеток. Это связано с тем, что пролиферацию Т-клеток в отсутствие IL-2 обеспечивают IL-15, IL-7, IL-4, а также комбинации нескольких цитокинов (IL-1в, IL-6, IL-12, TNFб). Точно так же дефект гена IL4 не приводит к значительным нарушениям в системе В-клеток и переключении изотипов иммуноглобулинов, поскольку сходные эффекты проявляет IL-13. В то же время некоторые цитокины не имеют функциональных аналогов. Наиболее известный пример незаменимого цитокина -- IL-7, лимфопоэтическое действие которого, по крайней мере на определенных этапах Т-лимфопоэза уникально, в связи с чем дефекты генов самого IL-7 или его рецептора приводят к развитию тяжелой комбинированной иммунной недостаточности (ТКИН).

Помимо избыточности, в системе цитокинов проявляется и другая закономерность: цитокины плейотропны (действуют на различные мишени) и полифункциональны (вызывают различные эффекты). Так, число клеток-мишеней IL-1в и TNFб с трудом поддается учету. Столь же разнообразны вызываемые ими эффекты, участвующие в формировании комплексных реакций: воспаления, некоторых этапов гемопоэза, нейротропных и других реакций.

Еще одна важная черта, свойственная системе цитокинов, -- взаимосвязь и взаимодействие цитокинов. С одной стороны, это взаимодействие заключается в том, что одни цитокины, действуя на фоне индукторов или самостоятельно, вызывают или усиливают (реже подавляют) выработку других цитокинов. Наиболее яркие примеры усиливающего действия -- активность провоспалительных цитокинов IL-1в и TNFб, усиливающих собственную выработку и образование других провоспалительных цитокинов (IL-6, IL-8, других хемокинов). IL-12 и IL-18 являются индукторами IFNг. TGFв и IL-10, наоборот, подавляют выработку различных цитокинов. IL-6 проявляет ингибирующую активность в отношении провоспалительных цитокинов, а IFNг и IL-4 взаимно подавляют выработку друг друга и цитокинов соответствующих (Th1 и Th2) групп. Взаимодействие между цитокинами проявляется и на функциональном уровне: одни цитокины усиливают или подавляют действие других цитокинов. Описаны синергизм (например, внутри группы провоспалительных цитокинов) и антагонизм цитокинов (например, между Th1- и Th2-цитокинами).

Cуммируя полученные данные, можно заключить, что ни один из цитокинов не существует и не проявляет своей активности изолированно -- на всех уровнях цитокины испытывают влияние других представителей этого класса молекул. Результат такого многообразного взаимодействия иногда может быть неожиданным. Так, при использовании в лечебных целях высоких доз IL-2 возникают опасные для жизни побочные эффекты, некоторые из которых (например, шок, подобный токсическому, без бактериемии) удается снять антителами, направленными не против IL-2, а против TNFб.

Наличие множественных перекрестных взаимодействий в системе цитокинов послужило причиной создания понятия «цитокиновая сеть», достаточно четко отражающего суть явления.

Для цитокиновой сети характерны следующие свойства:

  • · индуцибельность синтеза цитокинов и экспрессии их рецепторов;
  • · локальность действия, обусловленная скоординированной экспрессией цитокинов и их рецепторов под влиянием одного и того же индуктора;
  • · избыточность, объясняющаяся перекрыванием спектров действия разных цитокинов;
  • · взаимосвязи и взаимодействие, проявляющиеся на уровне синтеза и реализации функций цитокинов.

Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОб и др.) способны участвовать в реализации всех перечисленных механизмов.

Ответ клетки на влияние цитокина зависит от нескольких факторов:

  • · от типа клеток и их исходной функциональной активности;
  • · от локальной концентрации цитокина;
  • · от присутствия других медиаторных молекул.

Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

В последние годы сложилось представление о системе цитокинов, объединяющей:

  • 1) клетки-продуценты;
  • 2) растворимые цитокины и их антагонисты;
  • 3) клетки-мишени и их рецепторы.

Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

Основные компоненты системы цитокинов.

Клетки-продуценты цитокинов

I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. ИЛ-12 индуцирует синтез ИФНг Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены (гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

ИФНг негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1. Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных Тh0 в Тh2-клетки.

В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРв, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей - ROR-гl. Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии.

Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4+ CD25+ и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРв и ИЛ-10.

Т-цитотоксические клетки (CD8+), естественные киллеры - слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявлениями аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-по- добных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например, липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1. Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

Клетки-мишени

Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды.

Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней. Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти». Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT - сигнальных трансдукторов и активаторов транскрипции. G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

Последний компонент - цитокины и их антагонисты, были описаны выше.

К цитокинам относятся разнообразные белки с молекулярной массой 15-40 кДа, которые синтезируются различными клетками в организме. Цитокины – это молекулы, обеспечивающие взаимодействие клеток иммунной системы, эндотелия сосудов, нервной системы, печени. В настоящее время известно более 200 цитокинов.

Одинаковые цитокины могут синтезироваться клетками разных типов – иммунной системы, селезенки, тимуса, соединительной ткани. С другой стороны, конкретная клетка способна образовывать множество различных цитокинов. Наибольшее разнообразие цитокинов образуется лимфоцитами, благодаря этому происходит взаимодействие лимфоцитарного иммунитета с другими иммунными механизмами и с организмом в целом.

Существенной особенностью цитокинов, в отличие от гормонов и других сигнальных молекул, является одинаковый, разный или даже противоположный результат их воздействия для разных клеток. Т.е. конечный результат воздействия цитокина зависит не от его типа, а от внутренней программы клетки-мишени, от ее индивидуальных задач!

Функции цитокинов

Роль цитокинов в регуляции функций организма может быть разделена на 4 основные составляющие:

1. Регуляция эмбриогенеза, закладки и развития органов, в том числе органов иммунной системы.

2. Регуляция процессов роста тканей:

3. Регуляция отдельных физиологических функций:

  • обеспечение функциональной активности клеток,
  • согласованность реакций эндокринной, иммунной и нервной систем,
  • поддержание гомеостаза (динамического постоянства) организма.

4. Регуляция защитных реакций организма на местном и системном уровне:

  • изменение продолжительности и интенсивности иммунных реакций (противоопухолевая и противовирусная защита организма),
  • модулирование воспалительных реакций,
  • участие в развитии аутоиммунных реакций.
  • стимуляция или подавление роста клеток,
  • участие в процессе кроветворения.

Цитокины - это обширное семействе биологически активных пептидов, которые обладают гормоноподобным действием и обеспечивают взаимодействие клеток иммунной, кроветворной, эндокринной и нервной систем.

В зависимос-ти от клеток-продуцентов различают интерлейкины, монокины и лимфокины. Совокупность цитокинов иммунной системы образует «каскад цитокинов». Анти-генная стимуляция приводит к секреции цитокинов «первого поколения» — фак-тора некроза опухоли α, интерлейкинов -1 β и — δ, которые индуцируют биосинтез центрального регуляторного цитокина ИЛ-2, а также ИЛ-3, ИЛ-4, ИЛ-5, γ-интерферона (цитокинов второго поколения). В свою очередь цитокины второго поколения влияют на биосинтез ранних цитокинов. Такой принцип действия позволяет вовлекать в реакцию все возрастающее число клеток.

Основными продуцентами цитокинов являются Т-хелпер ы и макрофаги.

В процессе роста и дифференцировки клеток крови, а также развития им-мунною ответа происходит модуляция (индукция, усиление, ослабление) экс-прессии рецепторов, в результате чего меняется способность той или иной клетки отвечать на определенный цитокин. Модуляторами экспрессии рецеп-торов нередко служат цитокины, причем в некоторых случаях цитокин спосо-бен изменять экспрессию собственного рецептора.

Основные свойства цитокинов:

  • синтезируются в процессе иммунного ответа ;
  • регулируют процесс иммунною ответа;
  • проявляют активность при очень низких концентрациях;
  • являются факторами роста и дифференцировки клеток;
  • способны выполнять несколько функций в широком круге тканей и кле-ток (плейотропный эффект);
  • способны оказывать сходные биологические эффекты (феномен дубли-рования);
  • могут продуцироваться самыми разнообразными клетками.

К провоспалительным цитокинам относятся ИЛ-1β, ИЛ-2, ИЛ-6, ИЛ-8, γ-ИФН, ФНО-α, а к антивоспалительным — ИЛ-4, ИЛ-10, ИЛ-13.

Сегодня выделяют такие классы цитокинов:

  • интерлейкины (выполняющие многочисленные функции);
  • интерфероны (ограничивают распространение внутриклеточных инфек-ций и оказывают иммунорегуляторный эффект);
  • колониестимулирующие факторы (регулируют дифференцировку и деле-ние предшественников лейкоцитов);
  • хемокины (репетируют миграцию клеток в очаг воспаления);
  • факторы некроза опухоли (оказывают провоспалительный эффект и опо-средуют индукцию апоптоза скомпрометированных клеток);
  • факторы роста (регулируют пролиферацию разнообразных клеток, что способствует заживлению ран и восполнению дефектов, причиненных воспалением).

Гранулоцит-макрофаг колониестимулирующий фактор α

Гранулоцит-макрофаг колониестимулирующий фактор α (GM-CSF-α) наряду с ИЛ-3 относится к ранним полипотентным гемопоэтическим факторам. Под-держивает клональный рост костномозговых предшественников гранулоцитов-макрофагов. Клетками-мишенями GM-CSF служат также зрелые гранулоциты, моноциты, эозинофилы . Он стимулирует антимикробную и противоопухолевую активность нейтрофилов, эозинофилов и макрофагов , индуцирует биосинтез ими некоторых цитокинов (ФНО- α, ИЛ-1, M-CSF). GM-CSF ингибирует ми-грацию нейтрофилов, способствуя их накоплению в зоне воспаления. Проду-центами GM-CSF являются стимулированные Т-лимфоцит ы, моноциты, фибро-бласты, эндотелиальные клетки.

Гранулоцит-колониестимулирующий фактор

Гранулоцит-колониестимулирующий фактор (G-CSF) является более поздним гемопоэтическим фактором, чем GM-CSF. Стимулирует рост колоний почти исключительно гранулоцитов и активирует зрелые нейтрофилы . Секретируется макрофагами, фибробластами, клетками эндотелия и стромы костного мозга. Клиническое применение G-CSF направлено на восстановление числа нейтрофилов в крови при лейкопении.

Макрофаг-колониестимулирующий фактор

Макрофаг-колониестимулирующий фактор (M-CSF) стимулирует роет макро-фагальных колоний из костномозговых предшественников. Вызывает проли-ферацию и активирует зрелые макрофаги, индуцируя биосинтез ими ИЛ-1β, G-CSF, интерферонов, простагландинов, усиливая их цитотоксичность по от-ношению к инфицированным и опухолевым клеткам. Продуцентами цитоки-на являются фибробласты, эндотелиальные клетки и лимфоциты.

Эритропоэтин

Эритропоэтин является основным цитокином, регулирующим образование эритроцитов из незрелых костномозговых предшественников Основным орга-ном, в котором происходит образование эритропоэтина в процессе неонаталь-ного развития, является печень. В постнатальном периоде он продуцируется прежде всего ночками.

Хемокины — специализированные цитокины, вызывающие направленное движение лейкоцитов. У человека описано более 30 различных хемокинов.

Хемокины вырабатываются лейкоцитами, тромбоцитами, клетками эндоте-лия, эпителия, фибробластами и некоторыми другими клетками. Регуляцию продукции хемокинов осуществляют про- и противовоспалительные цитоки-ны. Хемокины классифицируют в зависимости от местоположения в молекуле первых двух цистеиновых остатков. При этом различают следующие разновид-ности молекул:

  • α -хемокины — хемоаттрактанты нейтрофилов (ИЛ-8, ИЛ-10 и др.);
  • β -хемокины — принимают участие в развитии затяжного воспаления (RANTES, MIP-1, -2, -3, -4);
  • γ -хемокины — хемоаттрактанты CD4 + и CD8 + Т-лимфоцитов, а также естественных киллеров (лимфотактин);
  • фракталкин — специфический для Т-лимфоцитов хемокин;
  • хемокины липидной природы (в частности, тромбоцитактивирующий фактор).

Фактор некроза опухоли α (ФНО-α) является одним из центральных регу-ляторов врожденного иммунитета (наряду с ИЛ-1β, α/ β-ИФН). Проявляет множество биологических активностей, значительная часть которых анало-гична ИЛ-1β. Длительное пребывание ФНО-α в кровотоке приводит к исто-щению мышечной и жировой ткани (кахексии) и супрессии кроветворения. Многие биологические эффекты ФНО-α потенцируются γ-ИФН. Основны-ми клетками-продуцентами цитокина являются макрофаги, секретирующие его при стимуляции бактериальными продуктами, а также естественные кил-леры (ЕК).

Лимфотоксин

Лимфотоксин (ЛТ, ФНО-β) является одним из первых описанных цито-кинов. Спектры биологической активности ЛТ и ФНО-α идентичны. Цито-кин может играть роль в противоопухолевом, противовирусном иммунитете и иммунорегуляции. Клетками-продуцентами ЛТ являются активированные Т-лимфоциты. Материал с сайта

Трансформирующий фактор роста β (ТФР-β) является полифункциональным цитокином, секретируется Т-лимфоцитами на поздних стадиях акти-вации и оказывает супрессирующее действие на пролиферацию Т- и В-клеток. Может продуцироваться также макрофагами, тромбоцитами, клетками

Введение

    Общие сведения

    Классификация цитокинов

    Рецепторы цитокинов

    Цитокины и регуляция иммунного ответа

    Заключение

    Литература

Введение

Цитокины – одна из важнейших частей иммунной системы. Иммунной системе необходима система оповещения от клеток организма, как крик о помощи. Это, пожалуй, лучшее определение цитокинов. Когда клетка повреждена или поражена патогенным организмом, макрофаги и поврежденные клетки выделяют цитокины. Сюда входят такие факторы, как интерлейкин, интерферон и фактор некроза опухоли-альфа. Последний также доказывает, что разрушение опухолевой ткани контролируется иммунной системой. Когда цитокины выделяются, они призывают особые иммунные клетки, например, лейкоциты и Т- и В-клетки.

Цитокины также дают сигнал о какой-то конкретной цели, которую данные клетки должны выполнить. Цитокины и антитела абсолютно различны, так как антитела – это то, что связано с антигенами, они позволяют иммунной системе идентифицировать вторжение инородных организмов. Таким образом, можно провести аналогию: цитокины являются главным сигналом тревоги для захватчиков, а антитела – разведчиками. Процесс анализа цитокинов называется определением цитокинов.

Общие сведения

Цитокины (cytokines) [греч. kytos - сосуд, здесь - клетка и kineo - двигаю, побуждаю] - большая и разнообразная группа небольших по размерам (молекулярная масса от 8 до 80 кДа) медиаторов белковой природы - молекул-посредников («белков связи»), участвующих в межклеточной передаче сигналов преимущественно в иммунной системе.

К цитокинам относят фактор некроза опухоли, интерфероны, ряд интерлейкинов и др. Цитокины, которые синтезируются лимфоцитами и являются регуляторами пролиферации и дифференцировки, в частности гематопоэтических клеток и клеток иммунной системы, называют лимфокинами.

Все клетки иммунной системы имеют определенные функции и работают в четко согласованном взаимодействии, которое обеспечивается специальными биологически активными веществами - цитокинами - регуляторами иммунных реакций. Цитокины - это специфические белки, с помощью которых разнообразные клетки иммунной системы могут обмениваться друг с другом информацией и осуществлять координацию действий.

Набор и количества цитокинов, действующих на рецепторы клеточной поверхности, - "цитокиновая среда" - представляют собой матрицу взаимодействующих и часто меняющихся сигналов. Эти сигналы носят сложный характер из-за большого разнообразия цитокиновых рецепторов и из-за того, что каждый из цитокинов может активировать или подавлять несколько процессов, включая свой собственный синтез и синтез других цитокинов, а также образование и появление на поверхности клеток цитокиновых рецепторов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий. При изучении дифференцировки иммунокомпетентных и гемопоэтических клеток, а также механизмов межклеточного взаимодействия, формирующих иммунный ответ, и была открыта большая и разнообразная группа растворимых медиаторов белковой природы - молекул-посредников ("белков связи"), участвующих в межклеточной передаче сигналов - цитокинов.

Гормоны обычно исключают из этой категории на основании эндокринного (а не паракринного или аутокринного) характера их действия. (см. Цитокины: механизмы проведения гормонального сигнала). Вместе с гормонами и нейромедиаторами они составляют основу языка химической сигнализации, путем которой в многоклеточном организме регулируется морфогенез и регенерация тканей.

В положительной и отрицательной регуляции иммунного ответа им принадлежит центральная роль. К настоящему времени у человека обнаружено и изучено в той или иной степени, как уже упоминалось выше, более ста цитокинов, и постоянно появляются сообщения об открытии новых. Для некоторых получены генно-инженерные аналоги. Цитокины действуют через активацию рецепторов цитокинов.