Структурная формула азотной кислоты с объяснениями. Азотная кислота и нитраты

Одноосновная сильная кислота, представляющая собой в стандартных условиях бесцветную жидкость, которая при хранении желтеет, может находиться в твердом состоянии, характеризующемся двумя кристаллическими модификациями (моноклинная или ромбическая решетки), при температурах ниже минус 41,6 оС. Это вещество с химической формулой — HNO3 — называется азотная кислота. Имеет молярную массу 63,0 г/моль, а ее плотность соответствует 1,51 г/см³. Температура кипения кислоты равняется 82,6 оС, процесс сопровождается разложением (частичным): 4HNO3 → 2H2O + 4NO2 + O2. Раствор кислоты с массовой долей основного вещества, равной 68 % кипит при температуре 121 оС. чистого вещества соответствует 1,397. Кислота способна смешиваться с водой в любых соотношениях и, являясь сильным электролитом, почти полностью распадаться на ионы H+ и NO3-. Твердые формы — тригидрат и моногидрат имеют формулы: HNO3 . 3H2O и HNO3 . H2O соответственно.

Азотная кислота — коррозионно активное, токсическое вещество и сильный окислитель. Со средних веков известно такое название, как «сильная вода» (Aqua fortis). Алхимики, открывшие кислоту в 13 веке, дали такое название, убедившись в ее необычайных свойствах (разъедала все металлы, кроме золота), превосходящих в миллион раз силу уксусной кислоты, которую в те времена считали самой активной. Но еще через три столетия было установлено, что разъедать, даже золото, может смесь таких кислот, как азотная и соляная в объемном соотношении 1:3, которую по этой причине и назвали «царская водка». Появление желтого оттенка при хранении объясняется накоплением в ней окислов азота. В продаже кислота чаще бывает с концентрацией 68 %, а при содержании основного вещества более 89 % ее называют «дымящей».

Химические свойства азотной кислоты отличают ее от разбавленной серной или соляной кислот тем, что HNO3 более сильный окислитель, поэтому никогда не выделяется водород в реакциях с металлами. Благодаря окислительным свойствам она реагирует также с многими неметаллами. И в том, и другом случае всегда образуется диоксид азота NO2. В окислительно-восстановительных реакциях восстановление азота происходит до различной степени: HNO3, NO2, N2O3, NO, N2O, N2, NH3, что определяется концентрацией кислоты и активностью металла. В молекулах образующихся соединений содержится азот со степенью окисления: +5, +4, +3, +2, +1, 0, +3 соответственно. Например, медь окисляется концентрированной кислотой до нитрата меди (II): Cu + 4HNO3 → 2NO2 + Cu(NO3)2 + 2H2O, а фосфор — до метафосфорной кислоты: P + 5HNO3 → 5NO2 + HPO3 + 2H2O.

Иначе взаимодействует разбавленная азотная кислота с неметаллами. На примере реакции с фосфором: 3P + 5HNO3 +2H2O → 3H3PO4 + 5NO видно, что азот восстанавливается до двухвалентного состояния. В результате образуется монооксид азота, а фосфор окисляется до Концентрированная азотная кислота в смеси с соляной кислотой растворяет золото: Au + 4HCl + HNO3 → NO + H + 2H2O и платину: 3Pt + 18HCl + 4HNO3 → 4NO +3H2 + 8H2O. В этих реакциях на начальном этапе соляная кислота окисляется азотной с выделением хлора, а затем металлы образуют комплексные хлориды.

Азотная кислота в промышленных масштабах получается тремя основными способами:

  1. Первый — взаимодействием солей с серной кислотой: H2SO4 + NaNO3 → HNO3 + NaHSO4. Раньше это способ был единственным, но, с появлением других технологий, в настоящее время его используют в лабораторных условиях для получения дымящей кислоты.
  2. Второй — это дуговой способ. При продувании воздуха через с температурой от 3000 до 3500 оС, часть азота воздуха реагирует с кислородом, при этом образуется монооксид азота: N2 + O2 → 2NO, который после охлаждения окисляется до диоксида азота (при высокой температуре монооксид с кислородом не взаимодействует): O2 + 2NO → 2NO2. Затем, практически, весь диоксид азота, при избытке кислорода, растворяется в воде: 2H2O +4NO2 + O2 → 4HNO3.
  3. Третий — это аммиачный способ. Аммиак окисляется на платиновом катализаторе до монооксида азота: 4NH3 + 5O2 → 4NO + 6H2O. Образовавшиеся нитрозные газы охлаждаются, и образуется диоксид азота, который поглощается водой. Этим способом получают кислоту с концентрацией от 60 до 62 %.

Азотная кислота в промышленности широко применяется для получения лекарств, красителей, азотных удобрений и солей азотной кислоты. Кроме того, она используется для растворения металлов (например, медь, свинец, серебро), которые не реагируют с другими кислотами. В ювелирном деле используется для определения золота в сплаве (это способ является основным).

Особые свойства азотной и концентрированной серной кислоты.

Азотная кислота - HNO3, кислородосодержащая одноосновная сильная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками. Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентраций 68,4 % и tкип120 °C при 1 атм. Известны два твёрдых гидрата: моногидрат (HNO3 H2O) и тригидрат (HNO3 3H2O).
Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

HNO3 ---> 4NO2 + O2 + 2H2O

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении.

Азотная кислота является сильным окислителем , концентрированная азотная кислота окисляет серу до серной, а фосфор - до фосфорной кислоты, некоторые органические соединения (например, амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Степень окисленности азота в азотной кислоте равна 4-5. Выступая в качестве окислителя, НNО может восстанавливаться до различных продуктов:

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрации HNO , тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется .

При взаимодействии разбавленной азотной кислоты с малоактивными металлами , например, с медью, выделяется NO. В случае более активных ме­таллов - железа, цинка, - образуется .

Сильно разбавленная азотная кислота взаимодействует с активными металлами -цинком, магнием, алюминием -- с образованием иона аммония, даю­щего с кислотой нитрат аммония. Обычно одновременно образуют­ся несколько продуктов.

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией. Так, концентрированная азотная кислота реагирует с медью с образованием диоксида азота, а разбавленная - оксида азота (II):

Cu + 4HNO3----> Cu(NO3)2 + NO2 + 2H2O

3Cu + 8 HNO3 ----> 3Cu(NO3)2 + 2NO + 4H2O

Большинство металло в реагируют с азотной кислотой с выделением оксидов азота в различных степенях окисления или их смесей, разбавленная азотная кислота при реакции с активными металлами может реагировать с выделением водорода и восстановлением нитрат-иона до аммиака.

Некоторые металлы (железо, хром, алюминий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж». Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислотой и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе и золото. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:

3HCl + HNO3 ----> NOCl + 2 =2H2O

Серная кислота – тяжелая маслянистая жидкость, не имеющая цвета. Смешивается с водой в любых отношениях.

Концентрированная серная кислота активно поглощает воду из воздуха, отнимает её от других веществ. При попадании органических веществ в концентрированную серную кислоту происходит их обугливание, например, бумаги:

(C6H10O5)n + H2SO4 => H2SO4 + 5nH2O + 6C

При взаимодействии концентрированной серной кислоты с сахаром образуется пористая угольная масса, похожая на черную затвердевшую губку:

C12H22O11 + H2SO4 => C + H2O + CO2 + Q

Химические свойства разбавленной и концентрированной серной кислоты отличаются.

Разбавленныерастворы серной кислоты реагируют с металлами , расположенными в электрохимическом ряду напряжений левее водорода, с образованием сульфатов и выделением водорода.

Концентрированные растворы серной кислоты проявляют сильные окислительные свойства, обусловленные наличием в её молекулах атома серы в высшей степени окисления (+6), поэтому концентрированная серная кислота является сильным окислителем. Так окисляются некоторые неметаллы:

S + 2H2SO4 => 3SO2 + 2H2O

C + 2H2SO4 => CO2 + 2SO2 + 2H2O

P4 + 8H2SO4 => 4H3PO4 + 7SO2 + S + 2H2O

H2S + H2SO4 => S + SO2 + 2H2O

Она взаимодействует с металлами , расположенными в электрохимическом ряду напряжений металлов правее водорода (медь, серебро, ртуть), с образованием сульфатов, воды и продуктов восстановления серы. Концентрированные растворы серной кислоты не реагируют с золотом и платиной вследствие их малой активности.

а) малоактивные металлы восстанавливают серную кислоту до диоксида серы SO2:

Cu + 2H2SO4 => CuSO4 + SO2 + 2H2O

2Ag + 2H2SO4 => Ag2SO4 + SO2 + 2H2O

б) с металлами средней активности возможны реакции с выделением любого из трех продуктов восстановления серной кислоты:

Zn + 2H2SO4 => ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4 => 3ZnSO4 + S + 4H2O

4Zn + 5H2SO4 => 4ZnSO4 + H2S + 2H2O

в) с активными металлами могут выделяться сера или сероводород:

8K + 5H2SO4 => 4K2SO4 + H2S + 4H2O

6Na + 4H2SO4 => 3Na2SO4 + S + 4H2O

г) с алюминием, железом, хромом, кобальтом, никелем концентрированная серная кислота на холод (то есть без нагревания) не взаимодействует - происходит пассивирование этих металлов. Поэтому серную кислоту можно перевозить в железной таре. Однако при нагревании возможно взаимодействие с ней и железа, и алюминия:

2Fe + 6H2SO4 => Fe2(SO4)3 + 3SO2 + 6H2O

2Al + 6H2SO4 => Al2(SO4)3 + 3SO2 + 6H2O

Т.О. глубина восстановления серы зависит от восстановительных свойств металлов. Активные металлы (натрий, калий, литий) восстанавливают серную кислоту до сероводорода, металлы, расположенные в ряду напряжений от алюминия до железа - до свободной серы, а металлы с меньшей активностью - до сернистого газа.

Получение кислот.

1. Бескислородные кислоты получают путем синтеза водородных соединений неметаллов из простых веществ и последующего растворения полученных продуктов в воде

Неметалл + H 2 = Водородное соединение неметалла

H 2 + Cl 2 = 2HCl

2. Оксокислоты получают взаимодействием кислотных оксидов с водой.



Кислотный оксид + H 2 O = Оксокислота

SO 3 + H 2 O = H 2 SO 4

3. Большинство кислот можно получить взаимодействием солей с кислотами.

Соль + Кислота = Соль + Кислота

2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4

Основания– это сложные вещества, молекулы которых состоят из атома металла и одной или нескольких гидроксидных групп .

Основания - это электролиты, которые диссоциируют с образованием катионов металлического элемента и гидроксид-анионов.

Например:
КОН = К +1 + ОН -1

6.Классификация оснований:

1.По числу гидроксильных групп в молекуле:

а)· Однокислотные, молекулы которых содержат одну гидроксидную группу.

б)· Двухкислотные, молекулы которых содержат две гидроксидные группы.

в)· Трехкислотные, молекулы которых содержат три гидроксидые группы.
2. По растворимости в воде: Растворимые и Нерастворимые.

7.Физические свойства оснований :

Все неорганические основания– твердые вещества (кроме гидроксида аммония). Основания имеют разный цвет: гидроксид калия-белого цвета, гидроксид меди-голубого, гидроксид железа-красно-бурого.

Растворимые основания образуют мыльные на ощупь растворы, через что эти вещества получили название щелочь.

Щёлочи образуют лишь 10 элементов периодической системы химических элементов Д. И. Менделеева: 6 щелочных металлов – литий, натрий, калий, рубидий, цезий, франций и 4 щелочноземельных металла – кальций, стронций, барий, радий.

8.Химические свойства оснований:

1. Водные растворы щелочей изменяют окраску индикаторов. фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

2. Взаимодействуют :

а) с кислотами : Основание + Кислота = Соль + H 2 O

KOH + HCl = KCl + H 2 O

б) с кислотными оксидами: Щелочь + Кислотный оксид = Соль + H 2 O

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

в) с растворами: Раствор щелочи + Раствор соли = Новое основание + Новая соль

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4

г) с амфотерными металлами : Zn + 2NaOH = Na 2 ZnO 2 + H 2

Амфотерные гидроксиды:

а) Реагируют с кислотами с образованием соли и воды:

Гидроксид меди (II) + 2HBr = CuBr2 + вода.

б). Реагируют с щелочами: итог - соль и вода (условие: сплавление):

Zn(OH)2 + 2CsOH = соль + 2H2O.

в). Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе: Cr(OH)3 + 3RbOH = Rb3

Нерастворимые в воде основания при нагревании разлагаются на основной оксид и воду:

Нерастворимое основание = Основной оксид + H 2 O

Cu(OH) 2 = CuO + H 2 O

Соли – это продукты неполного замещения атомов водорода в молекулах кислот атомами металла или это продукты замещения гидроксидных групп в молекулах оснований кислотными остатками .

Соли - это электролиты, которые диссоциируют с образованием катионов металлического элемента и анионов кислотного остатка.

Например:

К 2 СО 3 = 2К +1 + СО 3 2-

Классификация:

Нормальные соли . Это продукты полного замещения атомов водорода в молекуле кислоты атомами неметалла, или продукты полного замещения гидроксидных групп в молекуле основания кислотными остатками.

Кислые соли . Это продукты неполного замещения атомов водорода в молекулах многоосновных кислот атомами металла.

Основные соли. Это продукты неполного замещения гидроксидных групп в молекулах многокислотных оснований кислотными остатками.

Типы солей:

Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.

Смешанные соли - в их составе присутствует два различных аниона.

Гидратные соли (кристаллогидраты) - в их состав входят молекулы кристаллизационной воды.

Комплексные соли - в их состав входит комплексный катион или комплексный анион.

Особую группу составляют соли органических кислот , свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей» , органических солей с температурой плавления ниже 100 °C.

Физические свойства:

Большинство солей-твердые вещества белого цвета. Некоторые соли имеют окраску. Например, дихромат калия-оранжевого, сульфат никеля-зеленого.

По растворимости в воде соли делятся на растворимые в воде, малорастворимые в воде и нерастворимые.

Химические свойства:

Растворимые соли в водных растворах диссоциируют на ионы:

1. Средние соли диссоциируют на катионы металлов и анионы кислотных остатков:

· Кислые соли диссоциируют на катионы металла и сложные анионы:

KHSO 3 = K + HSO 3

· Основные металлы диссоциируют на сложные катионы и анионы кислотных остатков:

AlOH(CH 3 COO) 2 = AlOH + 2CH 3 COO

2. Соли взаимодействуют с металлами с образованием новой соли и нового металла: Ме(1) + Соль(1) = Ме(2) + Соль(2)

CuSO 4 + Fe = FeSO 4 + Cu

3. Растворы взаимодействуют с щелочами Раствор соли + Раствор щелочи = Новая соль + Новое основание:

FeCl 3 + 3KOH = Fe(OH) 3 + 3KCl

4. Соли взаимодействуют с кислотами Соль + Кислота = Соль + Кислота:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

5. Соли могут взаимодействовать между собой Соль(1) + Соль(2) = Соль(3) + Соль(4):

AgNO 3 + KCl = AgCl + KNO 3

6. Основные соли взаимодействуют с кислотами Основная соль + Кислота = Средняя соль + H 2 O:

CuOHCl + HCl = CuCl 2 + H 2 O

7. Кислые соли взаимодействуют с щелочами Кислая соль + Щелочь = Средняя соль + H 2 O:

NaHSO 3 + NaOH = Na 2 SO 3 + H 2 O

8. Многие соли разлагаются при нагревании: MgCO 3 = MgO + CO 2

Представители солей и их значение:

Соли повсеместно используются как в производстве, так и в повседневной жизни:

Соли соляной кислоты. Из хлоридов больше всего используют хлорид натрия и хлорид калия.

Хлорид натрия (поваренную соль) выделяют из озерной и морской воды, а также добывают в соляных шахтах. Поваренную соль используют в пищу. В промышленности хлорид натрия служит сырьём для получения хлора, гидроксида натрия и соды.

Хлорид калия используют в сельском хозяйстве как калийное удобрение.

Соли серной кислоты. В строительстве и в медицине широко используют полуводный гипс, получаемый при обжиге горной породы (дигидрат сульфата кальция). Будучи смешан с водой, он быстро застывает, образуя дигидрат сульфата кальция, то есть гипс.

Декагидрат сульфата натрия используют в качестве сырья для получения соды.

Соли азотной кислоты. Нитраты больше всего используют в качестве удобрений в сельском хозяйстве. Важнейшим из них является нитрат натрия, нитрат калия,нитрат кальция и нитрат аммония. Обычно эти соли называют селитрами.

Из ортофосфатов важнейшим является ортофосфат кальция. Эта соль служит основной составной частью минералов - фосфоритов и апатитов. Фосфориты иапатиты используются в качестве сырья в производстве фосфорных удобрений,например, суперфосфата и преципитата.

Соли угольной кислоты. Карбонат кальция используют в качестве сырья для получения извести.

Карбонат натрия (соду) применяют в производстве стекла и при варке мыла.
- Карбонат кальция в природе встречается и в виде известняка, мела и мрамора.

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах.

Генетической называют связь между веществами разных классов, основанную на их взаимопревращениях.

Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одинаковым числом атомов углерода в молекуле.

Контроль знаний:

1. Дать определение солям, основаниям, кислотам, их характеристику, основных характерных реакций.

2.Почему кислоты и основания объединяются в группу гидроксиды? Что у них общего и чем они отличаются? Почему щелочь нужно приливать к раствору соли алюминия, а не наоборот?

3. Задание: Приведите примеры уравнений реакций, иллюстрирующих указанные общие свойства нерастворимых оснований.

4. Задание: Определите степень окисления атомов металлических элементов в приведенных формулах. Какая закономерность прослеживается между их степенью окисления в оксиде и основе?

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л2.стр.162-172,пересказ конспекта лекции №5.

Записать уравнения возможных реакций согласно схемам, указать типы реакций: а) НСl + СаО ... ;
б) НСl + Аl(ОН) 3 ... ;
в) Mg + HCl ... ;
г) Hg + HCl ... .

Разделить вещества по классам соединений. Формулы веществ: H 2 SO 4 , NaOH, CuCl 2 , Na 2 SO 4 , CaO, SO 3 , H 3 PO 4 , Fe(OH) 3 , AgNO 3 , Mg(OH) 2 , HCl, ZnO, CO 2 , Cu 2 O, NO 2

Лекция № 6.

Тема: Металлы . Положение металлических элементов в периодической системе. Нахождение металлов в природе. Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом).

Оборудование : периодическая система химических элементов, коллекция металлов, ряд активности металлов.

План изучения темы

(перечень вопросов, обязательных к изучению):

1. Положение элементов - металлов в периодической системе, строение их атомов.

2. Металлы как простые вещества. Металлическая связь, металлические кристаллические решетки.

3. Общие физические свойства металлов.

4. Распространенность металлических элементов и их соединений в природе.

5. Химические свойства элементов-металлов.

6. Понятие о коррозии.

Введение

Вы увлекаетесь цветоводством и пришли в магазин, чтобы купить удобрения для своих цветов. Пересматривая различные названия и составы, вы заметили бутыль с надписью "Азотное удобрение". Читаем его состав: "Фосфор, кальций, то-се... Азотная кислота? А это еще что за зверь?!". Обычно с азотной кислотой знакомятся именно в такой обстановке. И многим тогда же захочется узнать о ней побольше. Сегодня я постараюсь удовлетворить ваше любопытство.

Определение

Азотная кислота (формула HNO 3) является сильной одноосновной кислотой. В неокисленном состоянии она выглядит так, как на фото 1. В обычных условиях это жидкость, но ее можно перевести в твердое агрегатное состояние. И в нем она напоминает кристаллы, имеющие моноклинную или ромбическую решетку.

Химические свойства азотной кислоты

Имеет способность хорошо смешиваться с водой, где происходит почти полная диссоциация этой кислоты на ионы. Концентрированная азотная кислота имеет бурый цвет (фото). Его обеспечивает разложение на диоксид азота, воду и кислород, происходящее из-за солнечного света, который падает на нее. Если ее нагреть, произойдет такое же разложение. С ней реагируют все металлы, за исключением тантала, золота и платиноидов (рутения, родия, палладия, иридия, осмия и платины). Однако ее соединение с соляной кислотой может даже растворять некоторые из них (это так называемая "царская водка"). Азотная кислота, имеющая любую концентрацию, может проявляться в качестве окислителя. Многие органические вещества при взаимодействии с ней могут самовоспламеняться. А некоторые металлы в этой кислоте будут пассивироваться. При действии на них (а также при реакции с оксидами, карбонатами и гидроксидами) азотная кислота образует свои соли, носящие название нитратов. Последние хорошо растворяются в воде. Но нитрат-ионы в ней не гидролизуются. Если нагреть соли данной кислоты, то произойдет их необратимое разложение.

Получение

Для получения азотной кислоты синтетический аммиак окисляют с помощью платино-родиевых катализаторов до появления смеси нитрозных газов, которые в дальнейшем поглощаются водой. Также она образуется, когда смешивают и нагревают калиевую селитру и железный купорос.

Применение

С помощью азотной кислоты производят минеральные удобрения, взрывчатые и некоторые отравляющие вещества. Ею травят печатные формы (офортные доски, магниевые клише и т.д.), а еще подкисляют тонирующие растворы для фото. Из азотной кислоты производят красители и лекарства, а также с ее помощью определяют наличие золота в золотых сплавах.

Физиологическое воздействие

Учитывая степень влияния азотной кислоты на организм, ее относят к 3-му классу опасности (умеренно опасная). Вдыхание ее паров приводит к раздражению дыхательных путей. При попадании на кожу азотная кислота оставляет множество долго заживающих язв. Участки кожи, куда она попала, становятся характерного желтого цвета (фото). Говоря научным языком, происходит ксантопротеиновая реакция. Диоксид азота, который получается при нагревании азотной кислоты или ее разложении на свету, очень токсичен и может вызвать отек легких.

Заключение

Азотная кислота приносит пользу человеку как в разбавленном, так и в чистом состоянии. Но чаще всего она встречается в составе веществ, многие из которых вам наверняка знакомы (например, нитроглицерин).

Азотистая и азотная кислоты и их соли

Азотистая кислота существует либо в растворе, либо в газовой фазе. Она неустойчива и при нагревании распадается в парах:

2HNO 2 «NO+NO 2 +Н 2 О

Водные растворы этой кислоты при нагревании разлагаются:

3HNO 2 «HNO 3 +H 2 O+2NO

Эта реакция обратимая, поэтому, хотя растворение NO 2 и со­провождается образованием двух кислот: 2NO 2 + Н 2 O=HNO 2 +HNO 3

практически взаимодействием NO 2 с водой получают HNO 3:

3NO 2 +H 2 O=2HNO 3 +NO

По кислотным свойствам азотистая кислота лишь немного сильнее уксусной. Соли ее называются нитритами и в отличие от самой кислоты являются устойчивыми. Из растворов ее солей можно добавлением серной кислоты получить раствор HNO 2:

Ba(NO 2) 2 +H 2 SO 4 =2HNO 2 +BaSO 4 ¯

На основе данных о ее соединениях предполагают два типа структуры азотистой кислоты:

которым соответствуют нитриты и нитросоединения. Нитриты активных металлов имеют структуру I типа, а малоактивных ме­таллов - II типа. Почти все соли этой кислоты хорошо раствори­мы, но нитрит серебра труднее всех. Все соли азотистой кислоты ядовиты. Для химической технологии важны KNO 2 и NaNO 2 , которые необходимы для производства органических красите­лей. Обе соли получают из оксидов азота:

NO+NO 2 +NaOH=2NaNO 2 +Н 2 О или при нагревании их нитратов:

KNO 3 +Pb=KNO 2 +PbO

Pb необходим для связывания выделяющегося кислорода.

Из химических свойств HNO 2 сильнее выражены окислитель­ные, при этом сама она восстанавливается до NO:

Однако можно привести много примеров таких реакций, где азотистая кислота проявляет восстановительные свойства:

Определить присутствие азотистой кислоты и ее солей в рас­творе можно, если прибавить раствор иодида калия и крахмала. Нитрит-ион окисляет анион иода. Эта реакция требует присутст­вия Н + , т.е. протекает в кислой среде.

Азотная кислота

В лабораторных условиях азотную кислоту можно получить действием концентрированной серной кислоты на нитраты:

NaNO 3 +H 2 SO 4(к) =NaHSO 4 +HNO 3 Реакция протекает при слабом нагревании.

Получение азотной кислоты в промышленных масштабах осуществляется каталитическим окислением аммиака кислоро­дом воздуха:

1. Вначале смесь аммиака с воздухом пропускают над платино­вым катализатором при 800°С. Аммиак окисляется до оксида азота (II):

4NH 3 + 5O 2 =4NO+6Н 2 О

2 . При охлаждении происходит дальнейшее окисление NO до NO 2: 2NO+O 2 =2NO 2

3. Образующийся оксид азота (IV) растворяется в воде в присутст­вии избытка О 2 с образованием HNO 3: 4NO 2 +2Н 2 O+O 2 =4HNO 3

Исходные продукты - аммиак и воздух - тщательно очища­ют от вредных примесей, отравляющих катализатор (сероводо­род, пыль, масла и т.п.).

Образующаяся кислота является разбавленной (40-60% -ной). Концентрированную азотную кислоту (96-98% -ную) получают перегонкой разбавленной кислоты в смеси с концентрированной серной кислотой. При этом испаряется только азотная кислота.

Физические свойства

Азотная кислота - бесцветная жидкость, с едким запахом. Очень гигроскопична, «дымит» на воздухе, т.к. ее пары с влагой воздуха образуют капли тумана. Смешивается с водой в любых соотношениях. При -41,6°С переходит в кристаллическое состо­яние. Кипит при 82,6°С.

В HNO 3 валентность азота равна 4, степень окисления +5. Структурную формулу азотной кислоты изображают так:

Оба атома кислорода, связанные только с азотом, равноцен­ны: они находятся на одинаковом расстоянии от атома азота и несут каждый по половинному заряду электрона, т.е. четвертая часть азота разделена поровну между двумя атомами кислорода.

Электронную структуру азотной кислоты можно вывести так:

1. Атом водорода связывается с атомом кислорода ковалентной связью:

2. За счет неспаренного электрона атом кислорода образует кова­лентную связь с атомом азота:

3. Два неспаренных электрона атома азота образуют ковалентную связь со вторым атомом кислорода:

4. Третий атом кислорода, возбуждаясь, образует свободную 2р- орбиталь путем спаривания электронов. Взаимодействие непо­деленной пары азота со свободной орбиталью третьего атома кис­лорода приводит к образованию молекулы азотной кислоты:

Химические свойства

1. Разбавленная азотная кислота проявляет все свойства кислот. Она относится к сильным кислотам. В водных растворах диссо­циирует:

HNO 3 «Н + +NO - 3 Под действием теплоты и на свету частично разлагается:

4HNO 3 =4NO 2 +2Н 2 O+O 2 Поэтому хранят ее в прохладном и темном месте.

2. Для азотной кислоты характерны исключительно окислитель­ные свойства. Важнейшим химическим свойством является взаимодействие почти со всеми металлами. Водород при этом никогда не выделяется. Восстановление азотной кислоты зави­сит от ее концентрации и природы восстановителя. Степень окисления азота в продуктах восстановления находится в ин­тервале от +4 до -3:

HN +5 O 3 ®N +4 O 2 ®HN +3 O 2 ®N +2 O®N +1 2 O®N 0 2 ®N -3 H 4 NO 3

Продукты восстановления при взаимодействии азотной кисло­ты разной концентрации с металлами разной активности при­ведены ниже в схеме.

Концентрированная азотная кислота при обычной температу­ре не взаимодействует с алюминием, хромом, железом. Она пере­водит их в пассивное состояние. На поверхности образуется плен­ка оксидов, которая непроницаема для концентрированной кислоты.

3. Азотная кислота не реагирует с Pt, Rh, Ir, Та, Au. Платина и золото растворяются в «царской водке» - смеси 3 объемов концентрированной соляной кислоты и 1 объема концентриро­ванной азотной кислоты:

Au+НNO 3 +3НСl= AuСl 3 +NO­+2Н 2 О НСl+AuСl 3 =H

3Pt+4HNO 3 +12НСl=3PtCl 4 +4NO­+8H 2 O 2HCl+PtCl 4 =H 2

Действие «царской водки» заключается в том, что азотная кис­лота окисляет соляную до свободного хлора:

HNO 3 +HCl=Сl 2 +2Н 2 О+NOCl 2NOCl=2NO+Сl 2 Выделяющийся хлор соединяется с металлами.

4. Неметаллы окисляются азотной кислотой до соответствующих кислот, а она в зависимости от концентрации восстанавливает­ся до NO или NO 2:

S+бНNO 3(конц) =H 2 SO 4 +6NO 2 ­+2Н 2 ОР+5НNO 3(конц) =Н 3 РO 4 +5NO 2 ­+Н 2 О I 2 +10HNO 3(конц) =2HIO 3 +10NO 2 ­+4Н 2 О 3Р+5HNO 3(p азб) +2Н 2 О= 3Н 3 РО 4 +5NO­

5. Она также взаимодействует с органическими соединениями.

Соли азотной кислоты называются нитратами, представляют собой кристаллические вещества, хорошо растворимые в воде. Их получают при действии HNO 3 на металлы, их оксиды и гидрокси­ды. Нитраты калия, натрия, аммония и кальция называются се­литрами. Селитры используются главным образом как минераль­ные азотные удобрения. Кроме того, KNO 3 применяют для приготовления черного пороха (смесь 75% KNO 3 , 15% С и 10% S). Из NH 4 NO 3 , порошка алюминия и тринитротолуола изготавлива­ют взрывчатое вещество аммонал.



Соли азотной кислоты при нагревании разлагаются, причем продукты разложения зависят от положения солеобразующего металла в ряду стандартных электродных потенциалов:

Разложение при нагревании (термолиз) - важное свойство солей азотной кислоты.

2KNO 3 =2KNO 2 +O 2 ­

2Cu(NO 3) 2 =2CuO+NO 2 ­+O 2 ­

Соли металлов, расположенных в ряду левее Mg, образуют нитриты и кислород, от Mg до Cu - оксид металла, NO 2 и кисло­род, после Си - свободный металл, NO 2 и кислород.

Применение

Азотная кислота - важнейший продукт химической про­мышленности. Большие количества расходуются на приготовле­ние азотных удобрений, взрывчатых веществ, красителей, пласт­масс, искусственных волокон и др. материалов. Дымящая

азотная кислота применяется в ракетной технике в качестве окис­лителя ракетного топлива.

Азотная кислота HNO 3 - бесцветная жидкость, имеет резкий запах, легко испаряется. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой NaHCO 3)


Азотная кислота

Молекулярная формула: HNO 3 , B(N) = IV, С.О. (N) = +5

Атом азота образует 3 связи с атомами кислорода по обменному механизму и 1 связь - по донорно-акцепторному механизму.

Физические свойства

Безводная HNO 3 при обычной температуре - бесцветная летучая жидкость со специфическим запахом (т. кип. 82,6"С).


Концентрированная «дымящая» HNO 3 имеет красный или желтый цвет, так как разлагается с выделением NO 2 . Азотная кислота смешивается с водой в любых соотношениях.

Способы получения

I. Промышленный - 3-стадийный синтез по схеме: NH 3 → NO → NO 2 → HNO 3


1 стадия: 4NH 3 + 5O 2 = 4NO + 6H 2 O


2 стадия: 2NO + O 2 = 2NO 2


3 стадия: 4NO 2 + O 2 + 2H 2 O = 4HNO 3


II. Лабораторный - длительное нагревание селитры с конц. H 2 SO 4:


2NaNO 3 (тв.) +H 2 SO 4 (конц.) = 2HNO 3 + Na 2 SO 4


Ba(NO 3) 2 (тв) +H 2 SO 4 (конц.) = 2HNO 3 + BaSO 4

Химические свойства

HNO 3 как сильная кислота проявляет все общие свойства кислот

HNO 3 → H + + NO 3 -


HNO 3 - очень реакционноспособное вещество. В химических реакциях проявляет себя как сильная кислота и как сильный окислитель.


HNO 3 взаимодействует:


а) с оксидами металлов 2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O


б) с основаниями и амфотерными гидроксидами 2HNO 3 + Cu(OH) 2 = Cu(NO 3) 2 + 2H 2 O


в) с солями слабых кислот 2HNO 3 + СaСO 3 = Ca(NO 3) 2 + СO 2 + H 2 O


г) с аммиаком HNO 3 + NH 3 = NH 4 NO 3

Отличие HNO 3 от других кислот

1. При взаимодействии HNO 3 с металлами практически никогда не выделяется Н 2 , так как ионы H + кислоты не участвуют в окислении металлов.


2. Вместо ионов H + окисляющее действие оказывают анионы NO 3 - .


3. HNO 3 способна растворять не только металлы, расположенные в ряду активности левее водорода, но и малоактивные металлы - Си, Аg, Нg. В смеси с HCl растворяет также Au, Pt.

HNO 3 - очень сильный окислитель

I. Окисление металлов:


Взаимодействие HNO 3: а) с Me низкой и средней активности: 4HNO 3 (конц.) + Сu = 2NO 2 + Cu(NO 3) 2 + 2H 2 O


8HNO 3 (разб.) + ЗСu = 2NO + 3Cu(NO 3) 2 + 4H 2 O


б) с активными Me: 10HNO 3 (разб.) + 4Zn = N 2 O + 4Zn(NO 3) 2 + 5H 2 O


в) с щелочными и щелочноземельными Me: 10HNO 3 (оч. разб.) + 4Са = NH 4 NO 3 + 4Ca(NO 3) 2 + 3H 2 O


Очень концентрированная HNO 3 при обычной температуре не растворяет некоторые металлы, в том числе Fe, Al, Cr.


II. Окисление неметаллов:


HNO 3 окисляет Р, S, С до их высших С.О., сама при этом восстанавливается до NO (HNO 3 разб.) или до NO 2 (HNO 3 конц).


5HNO 3 + Р = 5NO 2 + H 3 PO 4 + H 2 O


2HNO 3 + S = 2NO + H 2 SO 4


III. Окисление сложных веществ:


Особенно важными являются реакции окисления сульфидов некоторых Me, которые не растворяются в других кислотах. Примеры:


8HNO 3 + PbS = 8NO 2 + PbSO 4 + 4H 2 O


22HNO 3 + ЗСu 2 S = 10NO + 6Cu(NO 3) 2 + 3H 2 SO 4 + 8H 2 O

HNO 3 - нитрующий агент в реакциях органического синтеза

R-Н + НО-NO 2 → R-NO 2 + H 2 O



С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 + H 2 O нитроэтан


С 6 Н 5 СН 3 + 3HNO 3 → С 6 Н 2 (NO 2) 3 СН 3 + ЗH 2 O тринитротолуол


С 6 Н 5 ОН + 3HNO 3 → С 6 Н 5 (NO 2) 3 OH + ЗH 2 O тринитрофенол

HNO 3 этерифицирует спирты

R-ОН + НO-NO 2 → R-O-NO 2 + H 2 O



С 3 Н 5 (ОН) 3 + 3HNO 3 → С 3 Н 5 (ONO 2) 3 + ЗH 2 O тринитрат глицерина

Разложение HNO 3

При хранении на свету, и особенно при нагревании, молекулы HNO 3 разлагаются за счет внутримолекулярного окисления-восстановления:


4HNO 3 = 4NO 2 + O 2 + 2H 2 O


Выделяется красно-бурый ядовитый газ NO 2 , который усиливает агрессивно-окислительные свойства HNO 3

Соли азотной кислоты - нитраты Me(NO 3) n

Нитраты - бесцветные кристаллические вещества, хорошо растворяются в воде. Имеют химические свойства, характерные для типичных солей.


Отличительные особенности:


1) окислительно-восстановительное разложение при нагревании;


2) сильные окислительные свойства расплавленных нитратов щелочных металлов.

Термическое разложение

1. Разложение нитратов щелочных и щелочноземельных металлов:


Me(NO 3) n → Me(NO 2) n + O 2


2. Разложение нитратов металлов, стоящих в ряду активности металлов от Mg до Cu:


Me(NO 3) n → Ме x О y + NO 2 + O 2


3. Разложение нитратов металлов, стоящих в ряду активности металлов превее Cu:


Me(NO 3) n → Ме + NO 2 + O 2


Примеры типичных реакций:


1) 2NaNO 3 = 2NaNO 2 + O 2


2) 2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2


3) 2AgNO 3 = 2Ag + 2NO 2 + O 2

Окислительное действие расплавов нитратов щелочных металлов

В водных растворах нитраты, в противоположность HNO 3 , почти не проявляют окислительной активности. Однако расплавы нитратов щелочных металлов и аммония (селитр) являются сильными окислителями, поскольку разлагаются с выделением активного кислорода.